УДК 598.422: 591.55-574.34/42 (477)

К ВОПРОСУ ОБ ИЗМЕРЕНИИ УСТОЙЧИВОСТИ КАК КОЛИЧЕСТВЕННОЙ ХАРАКТЕРИСТИКИ ДИНАМИКИ ОРНИТОКОМПЛЕКСОВ

Мацюра А.В.

Азово-Черноморская орнитологическая станция

To the question of measuring stability as qualitative characteristic of dynamics of bird communities Matzura A.V. Azov-Black Sea Ornithological Station.

This article is devoted to the problem of measuring stability of bird communities. To determine degree of the stability we offer to apply mathematical analysis. The main ideas are to present matrix of the bird community and use the standard deviation of a sample as a stability index. This method was applied to the island waterbird communities of Azov-Black Sea region. The outputs are discussed and conclusions on the further use are given.

При изучении динамики орнитокомплексов как группы совместно проживающих видов методом сравнительного анализа, одним из определяющих, на наш взгляд, моментов является оценка устойчивости - одного из свойств, поддающихся измерению на протяжении определенного промежутка времени.

Важность определения устойчивости обуславливается необходимостью получения данных о постоянстве - мере степени изменчивости и предсказуемости - мере регулярности в характере изменения динамики орнитокомплексов, для применения их при разработке рекомендаций по управлению и охране.

Принимая за основу определение устойчивости как внутренне присущей системе способности выдерживать изменение, вызванное извне, или восстанавливаться после него (Риклефс, 1979), применительно к условиям островных орнитокомплексов, мы определяем устойчивость отношением изменчивости параметров среды и самих орнитокомплексов.

Не касаясь аспектов устойчивости среды, рассмотрим определение показателя адекватного функционирования - компоненты характеристики орнитокомплекса.

Проблема оценки устойчивости сообщества получила свое развитие в работах ряда экологов (Frank, 1968; Margalef, 1969; Preston, 1969; Уильямсон, 1975; Уиттекер, 1980). Основными недостатками, по нашему мнению, является ограничение возможности применения некоторых методов только на популяционном уровне, либо определенная сложность применения и интерпретации полученных результатов, требующая от эколога серьезных знаний математической статистики.

Происходящие в орнитокомплексе флюктуации определяются тремя составляющими: постоянством и предсказуемостью среды; структурной устойчивостью самого орнитокомплекса; постоянством его функций, которые обусловлены пищевыми и конкурентными взаимосвязями популяций в пределах орнитокомплекса.

Предлагаемый нами подход основан на измерении устойчивости как

постоянства структуры, который учитывает изменения разнообразия и динамики составляющих орнитокомплекс видов.

Для проведения анализа устойчивости были использованы данные по трем островным системам - остров Китай (материковый остров Сиваша), Коржинские острова (аккумулятивные острова залива Черного моря), Обиточные острова (аккумулятивные острова залива Азовского моря).

Данные динамики численности колониально гнездящихся околоводных видов орнитокомплексов вышеуказанных островов отражены в таблицах 1-3.

Таблица 1. Динамика численности гнездящихся видов птиц острова Китай.*

Table 1. Dynamics of nesting bird numbers on Kitay island.

Виды Species	Численность по годам (пар) Numbers annually (pairs)							
	1991	1992	1993	1994	1995	1996		
Phalacrocorax carbo	554	1176	825	672	733	660		
	(2.74)	(3.07)	(2.92)	(2.83)	(2.87)	(2.82)		
Larus cachinnans	1 20 0	1600	1100	1600	680	600		
	(3.07)	(3.2)	(3.04)	(3.2)	(2.83)	(2.78)		
Larus ichthyaetus	243	105	323	196	306	193		
	(2.39)	(2.02)	(2.5)	(2.29)	(2.49)	(2.29)		
Итого	1997	2981	2248	2988	2369	1453		
Total	(3.3)	(3.46)	(3.55)	(3,39)	(3.24)	(3.16)		

Условные обозначения:

* - здесь и далее имеются в виду колониально гнездящиеся околоводные виды птиц (the data given concern colonially nesting waterbirds); численность приведена в парах, в скобках - значения десятичного логарифма (the numbers are in pairs, the figuresin parentheses are decimal logarithms).

Таблица 2. Динамика численности гнездящихся видов птиц Коржинских островов.

Table 2. Dynamics of nesting bird numbers on Korzhinskie islands.

Виды Species	Численность по годам (пар) Numbers annually (pairs)						
	1992	1993	1994	1995	1996		
Phalacrocorax carbo	71	1243	1368	773	1180		
	(1.8)	(3.0)	(3.1)	(2.8)	(3.07)		
Egretta alba	75	141	134	78	57		
	(1.8)	(2.1)	(2.1)	(1.8)	(1.73)		
Egretta garzetta	33	158	132	88	28		
	(1.5)	(2.1)	(2.1)	(1.9)	(1.45)		
Ardea cinerea	26	120	106	84	41		
	(1.4)	(2.0)	(2.0)	(1.9)	(1.61)		
Larus cachinnans	594	1157	3500	471	2000		
	(2.7)	(3.0)	(3.5)	(2.6)	(3.3)		
Итого	799	2819	5240	1494	3303		
Total	(2.9)	(3.4)	(3.7)	(3.1)	(3.52)		

Предлагаемый нами подход к оценке устойчивости как относительной величины, характеризующей изменение численности отдельных видов и всего орнитокомплекса в целом, предполагает первоначальное представление данных

по любому орнитокомплексу в виде матрицы, содержащей числовые характеристики обилия всех видов (в абсолютных значениях, либо в десятичных логарифмах) за те интервалы времени, в течение которых производилась оценка численности.

Таблица 3. Динамика численности гнездящихся видов птиц островов Обиточного залива

•						•	
Виды Species	Численность по годам (пар) Numbers annually (pairs)						
	1991	1992	1993	1994	1995	1996	
Podiceps cristatus			80	4	22		
			(1.90)	(0.60)	(1.30)		
Phalacrocorax carbo	1329	4720	5280	1160	2593	1437	
	(3.12)	(3.67)	(3.72)	(3.06)	(3,41)	(3.16)	
Egretta alba	121	35	46	46	48	23	
	(2.08)	(1.54)	(1.66)	(1.66)	(1.68)	(1.36)	
Egretta garzetta		45	41	32	57	1	
		(1.65)	(1.61)	(1.51)	(1.76)	(0)	
Ardea cinerea		85	66	18	74	74	
		(1.93)	(1.82)	(1.26)	(1.87)	(1.87	
Larus cachinnans	238	2300	1600	330	810	544	
	(2.38)	(3.36)	(3.20)	(2.52)	(2.91)	(2.74	
Carrier Minnesda			530	1342	4139		
Sterna hirundo			(2.72)	(3.13)	(3.62)		
Sterna sandvicensis			600	486	2500		
			(2.78)	(2.69)	(3.39)		
Sterna albifrons					32		
					(1.50)		
					50		
Larus genei					(1.69)		
Итого	1688	7185	8243	3418	10325	2079	
Total	(3.23)	(3.86)	(3.92)	(3.53)	(4.01)	(3.32)	

Следующим шагом является проведение двухфакторного дисперсионного анализа. В каждой строке и каждом столбце рассчитываются среднее значение и дисперсия.

Дисперсия внутри строки - это представление изменения численности вида за разные годы в виде разброса значений вокруг среднего. Дисперсия между строк отражает усредненную структуру сообщества, его пирамиду численностей. Полученное число есть математическое отображение размаха флюктуаций всех видов, составляющих орнитокомплекс, и величиной, характеризующей относительную стабильность, как свойство поддерживать постоянное число гнездящихся пар.

Другим важным моментом является определение устойчивости как постоянства состава гнездящихся видов и их численности. Вторая компонента дисперсии - дисперсия между столбцами, отражает различия по годам в относительной выравненности орнитокомплекса и является мерой устойчивости, как неизменность числа гнездящихся видов и числа гнездящихся пар каждого вида в отдельности.

Для сравнения, было рассчитано стандартное отклонение логарифма общей численности орнитокомплексов, которое также может быть использовано в качестве

меры устойчивости, однако, по нашему мнению, только для оценки устойчивости орнитокомплекса как анализа изменения его общей численности, что не учитывает процессы изменения его относительной выравненности видов (Уильямсон, 1975). Полученные значения отображены в таблице 4.

Таблица 4. Значения мер устойчивости для сравниваемых орнитокомплексов.*

Table 4. The values of the stability for the waterbird communities compared*

Островные системы Island systems	Дисперсия по годам Standard deviation of the years	Дисперсия по видам Standard deviation of the species	Отклонение логарифма Decimal logarithm inclination 0.27 0.32	
Остров Китай Island Kitay	0.22	0.36		
Коржинские острова Korginskiy islands	0.32	0.70		
Обиточные острова Obitochniy islands	0.25	0.91	0.11	

^{* -} меньшее значение соответствует большей устойчивости (the least value corresponds to the most corresponds stable community).

Орнитокомплекс острова Китай характеризуется наименьшими значениями дисперсий по годам и видам, а, следовательно, по этим показателям может быть определен как наиболее устойчивая островная система. Орнитокомплекс Коржинских островов отличается большей устойчивостью, чем островов Обиточного залива с позиции динамики всех видов орнитокомплекса. В свою очередь орнитокомплекс островов Обиточного залива имеет более высокую степень устойчивости как стабильной выравненности - то есть по сохранению соотношения численности гнездящихся видов из года в год.

Согласно значениям стандартного отклонения логарифма численности, наибольшей устойчивостью отличается орнитокомплекс островов Обиточного залива, затем в порядке уменьшения - острова Китай и Коржинских островов.

В отличие от первых двух, последняя мера устойчивости не учитывает флюктуации численности отдельных видов и следовательно отсутствие на гнездовании того или иного вида. Этим и объясняется столь высокое значение, полученное для орнитокомплекса островов Обиточного залива, который в целом характеризуется определенной нестабильностью: ряд видов отмечается на гнездовании крайне нерегулярно - малая крачка (Sterna albifrons), морской голубок (Larus genei).

Несмотря на более низкое видовое разнообразие, по сравнению с остальными системами, орнитокомплекс острова Китай является самым устойчивым, что можно объяснить несколькими причинами - материковое происхождение и глинистый групт определяют степной характер растительности, противостоящий процессам выветривания, большая высота острова (что дает определенное преимущество при штормах и сгоино-нагонных явлениях), удаленность от материка (что практически сводит на нет фактор беспокойства со стороны людей и ограничивает присутствие хищников). Необходимо отметить, что в целом материковые острова характеризуются тенденцией к уменьшению площади, тогда как аккумулятивные острова отличаются двусторонней динамикой площадей (увеличение - уменьшение), что связано с особенностями гидрологического и ветрового режимов. Динамика

орнитокомплексов материковых островов имеет более устойчивый характер (направление в сторону уменьшения). Что касается аккумулятивных образований, то, принимая во внимание вышесказанное, изменение численности орнитокомплексов имеет обычно волнообразный характер.

Более низкие значения индексов устойчивости для островов Обиточного залива определяются нестабильным гидрологическим режимом, мощным антропогенным воздействием (рыболовство, охота, рекреация), сокращением гнездовой территории для чаек и крачек за счет увеличения площадей, занятых тростником, территориальный пресс в отношении других видов со стороны чайкихохотуньи (Larus cachinnans) и большого баклана (Phalacrocorax carbo).

Орнитокомплекс Коржинских островов также подвержен влиянию изменения уровня воды, при небольшой площади островов, значительная часть территории занята тростниковыми ассоциациями, в определенной степени воздействие оказывает антропогенный фактор (рыболовство). Одними из основных моментов, определяющими размещение птиц на островах в данных условиях являются мозаичность, высота, площадь проективного покрытия растительности, а также наличие тростниковых биотопов.

Возможно, что на степень устойчивости на структурном уровне более влияют значения относительной выравненности и доминирования, чем видовое разнообразие орнитокомплексов, что в определенной степени подтверждается результатами анализа.

Исходя из результатов, можно предположить, что орнитокомплексы характеризуются несколькими видами устойчивости с позиции анализа их структуры. Для выявления корреляционных зависимостей между ними необходимы дополнительные исследования, что, возможно, потребует сравнение показателей устойчивости гораздо большего числа орнитокомплексов различных островных систем, а для получения полной информации об устойчивости сообщества нужны дополнительные данные по изменению условий среды (температурный и гидрологический режим, осадки и ветровой режим) и сложности сообщества (трофические, внутривидовые и межвидовые отношения).

Для последующего управления и охраны островных систем исследования в области устойчивости орнитокомплексов будут иметь немаловажное значение как необходимая основа для прогнозирования численности птиц и ее изменения, однако, в то же время необходимы геоморфологические (изменения площадей и конфигурации островов) и геоботанические исследования (изучение процессов сукцессий островной растительности), изучение кормовой базы, анализ различных факторов, воздействующих на орнитокомплекс, особенно важным будет являться мониторинг антропогенного воздействия.

Литература

Риклефс Р. Основы общей экологии. М.: Мир, 1979.- С. 377-395.

Уильямсон М. Анализ биологических популяций. М.: Мир, 1975.- С. 247-253.

Унттекер Р. Сообщества и экосистемы. М.: Прогресс, 1980.- С. 56-68.

Frank P.W. Life histories and community stability // Ecology.- 1968, - N49.- P. 355-357.

Margalef R. Diversity and stability: a practical proposal and a model of interdependence // Brookhaven Symposia on Biology.- 1969,- N22.- P. 25-37.

Preston F.W. Diversity and stability in the biological world // Brookhaven Symposia on Biology.-1969, - N22,- P 1-12.