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INTRODUCTION
The possibility to excite the coherent solitary 

wave structure like the electric potential hump of large 
amplitude in the accelerator electron beam has been 
considered. Its properties and dependencies of 
properties on amplitude have been investigated. The 
beam electron behavior determines the properties of 
solitary perturbation. This perturbation propagates in 
the rest frame of beam with velocity approximately 
equal to the thermal velocity of beam electrons. It 
represents a nonlinear perturbation on an electron - 
sound mode. The perturbation forms hole in the 
electron phase space. At small amplitude the width of 
perturbation decreases with amplitude growth so that 
area of the hole in phase space is not changed. At large 
amplitude the width of hole increases with amplitude 
growth. Therefore, part of beam electrons is trapped by 
electric field of perturbation and forms the vortex in the 
electron phase space which frames the hole. This hump 
of electric potential is the BGK perturbation. The 
presented analytical investigation of these solitary 
perturbation properties is initiated by the fact that 
similar perturbations have been observed in 
synchrotron experiments. Also similar perturbations 
have been formed in laboratory, magnetosphere 
plasmas and in numerical simulations.

PROPERTIES OF SOLITARY PERTURBATION 
FOR SMALL AMPLITUDES

As a result of nonstationary and localized- in 
-space processes the perturbations of final width can be 
formed in the electron beam and propagate with 
characteristic velocity of a system [1].

The experiments on magnetized conductive 
cylindrical structures with electron beam have 
demonstrated existence of two kinds of solitary 
perturbations. One is formed on a mode of the 
magnetized conductive cylindrical structure with 
electron beam. In approach of small amplitudes it is 
described by the KdV equation and is the hollow of 
negative electrical potential. Second nonlinear 
perturbation, observed in magnetized conductive 
cylindrical structures with electron beam, is the solitary 
positive hump of electrical potential. It propagates 
relative to beam with velocity close to thermal velocity 
of beam electrons, Vth. Therefore, the resonant electrons 
can be trapped by such potential perturbation. Thus, it 
is possible to expect, that the kinetics of resonant 
electrons plays an important role in determination of 
properties and dynamics of this perturbation. As 
behaviour of resonant and nonresonant electrons is 
different in this perturbation field, electrons should be 
described within the framework of kinetic approach. 
Electrical potential hump, propagating relative to beam 
with velocity close to thermal velocity of the beam 

electrons, forms a hole in electron phase space, called 
electron hole.

Fig. 1. Electron distribution function.

Other properties of an electron hole are found 
from experiments and numerical simulation:

For the electron hole cab appear the amplitude of 
external pulse should exceed the threshold value.

The amplitude of the electron hole decreases 
with a pressure increasing. First two properties are 
determined by the fact that resonant electrons are 
trapped by the hump of the electrical potential, their 
distribution function is mixed on phases. As a result the 
potential hump expends energy to increase the energy of 
resonant electrons.

The spatial size of an electron hole is less than 
the longitudinal size of potential hollow in the 
magnetized electron-filled conductive cylinder. As is 
shown below it is determined by that, the spatial size of 
the electron hole is determined by the electron Debye 
radius, and the spatial size of the potential hollow is 
determined by the transversal size of cylinder. The 
transversal size of cylinder is considerably more than 
the electron Debye radius.

The electron hole is stable. It is determined by 
that neglecting collisions of beam electrons there is no 
energy exchange of resonant electrons with symmetrical 
velocity distribution function and nonresonant electrons 
with nonsymmetrical distribution function.

Two colliding electron holes save their 
individuality after collision, if their relative velocity is 
rather high. They are merging when their relative 
velocity is low. During merging of two electron holes in 
one the sound packet can be radiated. The latter is 
determined by damping oscillations in the shape of 
integrated electron hole. These oscillations are 
determined by oscillations of resonant electrons in a 
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field of integrated electron hole up to their full 
intermixing on phases.

Fig. 2. Electron phase space.

Further we shall construct the analytical 
description of this stationary solitary potential 
perturbation (similar to [1, 2]), propagating relative to 
the beam with velocity close to thermal velocity of 
beam electrons. It ensures properties of this solitary 
perturbation: positive potential hump, velocity and hole 
in the electron phase space and dependence of 
properties on its amplitude.

Formation and existence of electrostatic 
structures: double layers, solitons and holes in the 
electron phase space are detected in many laboratory 
experiments and in numerical simulations [112, 142, 
232 - 233].

These structures result from transformation of 
topology of a phase space and, therefore, lead to 
characteristic transformations of a nonlinear behaviour 
of the system.

An example of a modified behaviour in question 
is the excitation of solitary perturbation or the hole in 
the electron phase space [155, 156, 159].

Presence of the solitary perturbation leads to 
transformation of the electron distribution function to 
symmetrical form in the resonant area. Such condition 
is asymptotic one, arisen as a result of instability 
development and leading at nonlinear stage to trapping 
of resonant electrons by solitary perturbation with 
positive potential. In quasistationary approximation this 
perturbation represents BGK solution [235, 236].

With neglecting the interaction of an electron 
beam with cylinder this solitary perturbation is 
stationary. However, taking into account the interaction 
of an electron beam with cylinder it is necessary to 
expect the occurrence of slow increase in perturbation 
amplitude as a result of the instability development.

The purpose of the present paper is the 
derivation of the description of stationary soliton or 
hole in the electron phase space.

We describe the beam electron dynamics in one-
dimensional approximation. We consider the solitary 
perturbation in the form of electric potential hump ϕ

(x,t) with amplitude ϕo and equal ϕ(±∞,t)=0 at x→±∞, 
i.e.

0<ϕ(x,t)<ϕo

Longitudinal component of an electrical field Ex is 
connected with an electrical potential ϕ(x,t) as  Ex=∂ϕ/∂
x.

The description of wave modes, characteristic 
velocities of which in rest frame of particles are of 
order of particle thermal velocity, requires kinetic 
consideration. The expression for perturbation of 
electron distribution function of beam is followed from 
Vlasov equation for electrons. Integrating the latter by 
the velocity, in case of small amplitude of solitary 
perturbation ϕo, one can obtain the expression for 
perturbation of electron density, which in the second 
order on ϕo(<<Te/e = mVth

2/e) equals
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Here, the point means derivation on time, prime- spatial 
derivation. Vo, ϕ are the velocity and potential of 
soliton. φ=eϕ/Te.

Substituting (1) in Poisson’s equation, one can 
obtain the evolution equation of KdV-type
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From (2) in the stationary approximation we obtain the 
equation describing spatial distribution of a potential:
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From (3) and ′ ==φ φ φ o
0 we have expression 

for Vo

Vo ≈ 1.32 Vth(1 - eϕo/6Te), (4)
Vo approximately equals Vth and decreases with growth 
ϕo.

Let us determine approximately the width of 
soliton from (3):

∆ x T ee o≈ ( / ) /48 1 2ϕ . (5)
The width of soliton decreases with the 

amplitude growth. The solitary perturbation is the 
electron phase hole. The area of this hole, 
approximately equal to ∆ x e mo( / ) /ϕ 1 2 , does not 
depend on ϕo.
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SOLITARY PERTURBATION FOR FINAL 
AMPLITUDES

In case of large amplitudes, eϕo/Te>1, from 
Vlasov and Poisson equations one can obtain without 
electrons, trapped by soliton field, the equation for the 
soliton shape
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From (6)
∆ x e To e≈ −[ / ( )] /2 2 1 1 2ϕ (7)

one can conclude that the soliton width increases with ϕ
o. Hence, the trapped electrons are necessary. Assuming 
for their density ntr(x) = n2exp[eϕ(x)/Ttr], one can obtain 
that ∆x and Vo  grow with ϕo

 (unlike the case of small 
amplitude).

Such soliton properties and their dependencies 
on amplitude have been observed in experiments and in 
numerical simulations.

So, the structure of nonlinear electrical solitary 
perturbation has been investigated here, namely, the 
hole in phase space of beam electrons. In a laboratory 
rest frame this hole, in the case of its small amplitudes, 
propagates with velocity, approximately equal to  Vo≈

Vb-1.32Vth, here Vb is the beam velocity; the width of 
solitary perturbation ∆ x T ee o b≈ ( / ) //48 1 2ϕ γ  is 
inversely proportional to the  relativistic factor of beam 
γb.
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