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The longitudinal dynamics of electron bunches with a large energy spread circulating in the storage rings with a
small momentum compaction factor is considered. Also the structure of the longitudinal phase space is considered as
well as its modification due to changes in the ring parameters. The response of an equilibrium area upon changes of

the nonlinear momentum compaction factor is presented.
PACS: 41.60.-m, 52.59.-f, 52.38-r

1. INTRODUCTION

Engagement of electron storage rings for production
of x rays through Compton scattering of laser photons
against ultra-relativistic electrons was proposed in 1998
[1]. Two basic schemes exist so far. One of them suppo-
ses use of electron beams with unsteady parameters [2]
and applies the continual injection (and ejection of
circulating bunches by the next injecting pulse) of dense
intensive bunches. The second scheme is based on the
continuous circulation of bunches. To confine the bun-
ches acquired a sufficiently large energy spread (see
[3]), a lattice with a small controllable momentum com-
paction factor is proposed to employ [4]. Longitudinal
dynamics in the small compaction factor lattice is
governed not only by the linear effects of the momentum
deviation but by the nonlinear ones as well.

In Compton sources storing the bunches with the
large energy spread which can be as high as a few per-
cents, ring's energy acceptance becomes compared to
the energy spread. To get proper lifetime of the
circulating electrons, the energy acceptance O = max
(E-E))/E; (E, is the energy of synchronous particle)
should be high enough.

Within a linear approximation according to the ener-
gy deviation, the acceptance can be increased either by
enhancement of the radio frequency (1f) voltage, V,;, or
by decreasing of the linear momentum compaction fac-
tor ap since ¢ 0 (Vir/ ao)”.

The paper presents result of study on the longitu-
dinal dynamics of electron bunches circulating in stora-
ge rings with a small linear momentum compaction
factor ay. Structure of the phase space is considered and
its deformation with changes in the ring lattice parame-
ters. In particular, the size of stable area as a function of
the rf voltage and momentum compaction is evaluated.

2. FINITE-DIFFERENCE MODEL

Let us consider a model of the ring comprised only
two components: a drift and an rf cavity. For the sake of
simplicity we will suggest the cavity infinitely short, in
which the particle momentum (energy) suffer an abrupt
change while the phase of a particle remains unchanged.
On the contrary, the phase of a particle traveling along

the drift changes while the energy remains invariable.
The longitudinal motion in such idealized ring will be
described in canonically conjugated variables ¢ (the
phase about zero voltage in the cavity) and the momen-
tum p = (y~))/); equal to the relative deviation of the
particle energy from the synchronous one ) is the
Lorentz factor of the synchronous particle).

To study systems able to confine the beams with
large energy spread, one needs to account not only the
linear part of the orbit deviation from the synchronous
one, but nonlinear terms as well:

Ax= Dp+ D,p*+ ..., (1
where D, and D, are the dispersion functions of the first

and second orders, respectively.
Accordingly, relative lengthening of a (flat) orbit is
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where L, is the length of synchronous orbit, o(s) the

local radius of curvature, s the longitudinal coordinate.
The coefficients o, and o, are determined as

0,= Lf)ﬂds’
Ly p
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In accordance with the definitions for oy and a;, the

momentum compaction factor a. can be written as
‘:Ld—L~ao+2a1p+... 4)
c LO dp .

To study the phase dynamics in a storage ring with
small momentum compaction factor oy, the next terms of
expansion of the compaction over the energy deviation
should be accounted for, hence — higher terms in the
sliding factor 17 [5-7]. Magnitude of 1] characterizes a
relative variation of the phase due to changes of the
particle velocity and orbit length. It is determined by the
relation

Aqf0=n(p)p= ho+np+..)p, 5)

(3a)

(3b)
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with 17, and 17, having been determined by
1

No=0¢~—,
s

y
_ 3 1
01'a1+/70+yxz l_ﬁ .

The finite-difference equations for the phase @ and
the variation of relative energy p in the model under
consideration read

0,=0,t (K()p[+K]pi2)AT ;
pr=pi~U,sing A1 |
where

(6a)

(6b)

(7a)
(7b)

At :rf—r.:A%?@f—tJ,

i

the subscripts i and f correspond to the initial and final
values, respectively. The dimensionless variable 7= ¢fc/
L represents time expressed in number of rotations (¢ is
time, fc the velocity of a particle). The factors K, and K;
at a large ) are determined by the expressions Ky = 27
N = 271100, K = 271[[71 = 271’1(670+a1) (h is the harmonic
number).

From Egs. (7), differential (smoothed) equations can
be deduced. As it seen, the RHS of (7b) contains the
final value of the phase @ expressed via the initial value
@ and momentum p; by the equation (7a).

Let us expand sing into series of powers of AT:

sing , = sin((p, + (K oDt K ,pf)A T ):

= sing, + cos¢,(K0pi+K1p[2)Ar . (®)

Since AT cannot be regarded as infinitesimal (for-
mally Egs. (7) present a full turn, A7 = 1), then the linear
term can be neglected if kp:+Kip’[1. In the considered
case it can be done since maximum of the energy spread
does not exceed a few percents, and the momentum
compaction factor a, supposed small. From these
assumptions, finite difference equations reduce to

A

%: K()pi+K1p129 (%a)

s -u,sing, (9b)
3. DIFFERENTIAL MODEL

Noting of formal similarity of Egs.(8) to the
canonical Hamilton equations describing a mathematical
pendulum, we can use a smoothed analog to these
equations (a differential substitute for a finite-difference
equation, AT 0) to facilitate analysis of the motion

do

E:K0p+K1p2; (10a)
dp .

—=-U_sing . 10b
V= -U,sing (100)

A Hamilton function associated with (10) possesses
a specific form with the cubic canonical momentum
term

K K
H = ilp3+70p2+ka(l_COS¢). (11)

3
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To analyze a phase portrait of the system, it is con-
venient to present Hamilton function of the longitudinal
motion in the reduced form:

3 2
17:/.1%+ %+l-cos(0, (12)
where
~_ Ko _ |2Mha .y E,
PENG P e, P (13a)
2 2
'uzzKlUr/': (ao+al) ev, (13b)

Ko 2mha )y E,

Phase portraits of motion with the Hamiltonian (12)
represented in Fig. 1. The magnitude and sign of the
parameter [/ govern the topology of the phase plane. At
zero value, [/ ;, the Hamiltonian (11) or (12) has a form
of mathematical pendulum; its phase plane is presented
in Fig. 1(a).

Within the interval < Lf <1/12, there an additional
area of finite motion appears; this area is separated from
the main area with the band of infinite motion as depic-
ted in Fig. 1(b). When the parameter ( exceeds the criti-
cal value p?=1/12 [see Fig. 1(c)], e.g. Y12 <o,
the structure of the phase plane will have changed as is
represented in Fig. 1(d).

The dimension of a stable (finite) longitudinal moti-
on, i.e., the area comprised by a separatrix, is in direct
proportion with ratio of the ring parameters. For the
considered case of the nonlinear Hamiltonian (12), the
separatrix height (size along the p axis) is determined by

a ¢ ¢ o
Ap = 0 Hcos—+ COSH—+ fH 14
P ao+a,E 3 003 3[]%’ (14a)
2
+
cos{ = lZUU,M- 1,
nha g
3 a
Ap= 220
AT (14b)

for < . (14a) and (= W (14b), respectively.
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Fig. 1. Phase portrait of longitudinal motion with
account for the cubic nonlinearity at different values of
the parameter | (a): u=0 (b): u<su0 () U=,
p=0ed
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The phase width of the separatrix (dimension along
the @axis) is determined by expressions

bg=2r, <H,, (15

3
Ao = 2arccosH1- ﬂaioz s U2, (15b)
H r/'(ao"'al) H
for the sub- and overcritical values of the parameter (.
Dependence of the phase and momentum separatrix
extensions on rf amplitude at fixed other parameters,
which values are listed in the table, is presented in Fig. 2.

Ring parameters
parameter desig value
Accel. voltage (Volt) Vi 4x10°
Lorentz factor y 84
Harmonic number h 32
Linear comp. factor Qo 0.01
Quad. comp. factor a 0.2

As it can be seen from the plot in Fig. 2, while
increasing the parameter U, the separatrix height grows
up reaching its maximum, Ap = 7.1x107?, at U, = 3.8x1
0* (which is equal to the rf voltage of V,,= 16.3kV at y
—84).

With further increase in the rf voltage, the separatrix
height remains constant. The separatrix width remains
constant with increase of the rf voltage up to the critical
value U, then it is diminishing.

In Fig. 3, a dependence of the separatrix dimensions
upon the linear momentum compaction factor under
other system parameters fixed is presented.

0.08

0.06

Ap

0.04

0.02

0.00 —V+—"7T"—""FT""—"T"—"T"—T"—"T"—"T"—

Ao
IS
1

0 T T T T T T T T

o 1 2 3 4 5 6 7 8
U,10*

Fig. 2. Separatrix height (top) and width (bot) vs U,y

Quite the reverse to the dependence Ap=A¢U,), a
dependence of the separatrix width upon the linear com-
paction factor, A@=A¢ ), is increasing while
grows. At a certain critical value of the linear momen-
tum compaction factor Qo (in the suggested case (.
)y = 0.03), the width of equilibrium area has reached its
maximum and remains constant with further increase in

0. A dependence of the separatrix height on @, is of
increasing within interval 0 < oy < aoy. Then, after the
maximum at Qo = ao() this dependence becomes decli-
ning, coming to zero at a large .

Since the phase volume enclosed within the separa-
trix (and, therefore, the storage ring acceptance) is pro-
portional to product of the transverse dimensions of the
separatrix, 0 ~ApA¢ then from comparison of the plots
in Fig. 2 and Fig. 3 it follows that optimal working point
is about the critical parameters.

In addition, it can be seen that, dislike a linear
lattice, nonlinear terms in the momentum compaction
factor restrict the infinite increase of energy acceptance
with decreasing of the linear momentum compaction
factor: The acceptance increase takes place while the
linear compaction is above certain critical value Oy,
which is determined by the ring lattice parameters accor-
ding to equality

(a ot a 1)2eVr/' _ |

2nhe Jy E, 12

With further decrease of a, the acceptance also

decreases.

(16)
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Fig. 3. Separatrix height (top) and width (bottom) vs Qp

To validate the use of differential (smoothed) equa-
tions of motion (10) for analysis of Compton storage
ring, a code has been developed based on the finite
difference equations (7). A simulated phase space port-
rait at the ring parameters listed in the table for (= (L is
presented in Fig. 4.

From the figure it follows that the electrons can be
confined within not only the “linear” area (minimum of
Hamilton function (12)), but “nonlinear” as well. (The
nonlinear stable region disappears in a linear lattice.)
RMS sizes and the center of weight positions perfectly
correspond to the analytical estimations presented
above.
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4. SUMMARY. CONCLUSION

Results of the study on dynamics of synchrotron mo-
tion of particles in the storage rings with the nonlinear
momentum compaction factor presented in the paper,
can be digested as follows:

Grounded on a simplified model of the storage ring,
the finite-difference equations were derived. Hamiltoni-
an treatment of the phase space structure was performed.
As was shown, the structure of the phase space is gover-
ned by ratios of the ring parameters. An analytical ex-
pression for the factor 4, which determines the topology
of the longitudinal phase space, was derived.

Dependencies of the sizes of the equilibrium areas of
the synchrotron motion in a nonlinear lattice were deri-
ved. Analysis of dependence of the longitudinal accep-
tance upon the amplitude of rf voltage, and the linear
compaction factor at the fixed quadratic nonlinear term
was presented.
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Fig. 4. Distribution of confined electrons over the
longitudinal phase plane in a system with cubic
nonlinearity at U=, left bunch corresponds to
“linear” case, right - to “nonlinear” (additional)

As was shown, the acceptance is growing up only to
a definite magnitude, which determines by the critical
value of parameter (= [. It was emphasized that in or-
der to maximize the acceptance of a lattice with a small

linear momentum compaction factor and a wide energy
spread of electrons in the bunches, the system
parameters should be chosen close to the critical value
of L.

To validate the use of smoothed equations of motion,
a simulating code was developed. The code is based on
the finite-difference equations. The results of simulation
manifest a good agreement with the theoretical predic-
tions on the sizes and position of equilibrium areas.

The results obtained allow to make the following
conclusion: Enlargement of the energy acceptance of a
ring by decreasing of the momentum compaction factor
is limited with the nonlinearity in the compaction factor.
Decreasing of the linear compaction factor below the
certain limit causes the reversed effect — decreasing of
the acceptance.

Similar consequence corresponds to the build-up of
the rf voltage: Increase of the voltage above a certain
limit causes narrowing of possible bunch length while
the energy acceptance remains constant. This effect can
lead to decrease in the injection efficiency for high rf
voltages.

REFERENCES

1. Z.Huang, R.D. Ruth. Laser-electron storage ring
/l Phys. Rev. Lett. 1998, v. 80, p. 976-979.

2. RJ.Loewen. A compact light source: design
and technical feasibility study. Ph.D. thesis,
Stanford 2003.

3. P.L Gladkikh. Lattice and beam parameters of
compact intense X-ray source based on Compton
scattering // Phys. Rev. ST Accel Beams. 2005, v. 8,
050702.

4. E.V.Bulyak. Laser cooling of electron
bunches in Compton storage rings. Proc. EPAC-
2004
http://accelconf.web.CERN.ch/accelconf/e04/paper
s/.

5. C.Pellegrini, D.Robin. Quasiisochronous
storage ring // NIM. 1991, v. A301, p. 27-36.

6. Liu Lin, E.T. Gonsalves da Silva. // Second
order single particle dynamics in quasiisochronous
storage rings and its applications to the LNLS-
UVXring // NIM. 1993, v. A329, p. 9-15.

7. J. Feikes et al. The BESSY low alpha optics
and the generation of coherent synchrotron
radiation // ICFA Beam dynamics newsletter. 2004,
v. 35, p. 82-95.

NCCIEJOBAHUE CUHXPOTPOHHOI'O IBU/KEHUS B KOMIITOHOBCKOM HCTOYHUKE

E.B. Bynax, I1.H. I'naokux, B.B. Ckomopoxoe

HccnenoBana nposonpHas AMHAMUKA JJIEKTPOHHBIX CI'YCTKOB B HAKOITUTEINSIX C MAJIBIM KO (QHUIIEHTOM yIIaKOB-
KU OpOUT M C OOJIBIINM DHEPreTHYECKUM Pa30pocoM IJIEKTPOHOB B Iyuke. PaccMoTpeHa cTpyktypa (azoBoro mpo-
CTpaHCTBa M ero aedopmars MpH U3MEHEHHH IapaMETPOB HAKOMMTENIBFHOrO Koiblla. Iloka3aHa 3aBHCHMOCTB
pa3MepoB 007IaCTH yCTONUMBOCTH MPOAOIBHOTO ABHKEHHS OT ITApaMETPOB HAKONUTENS IPH HETMHEHHON CTPYKType

YPaBHEHHH JIBIKCHUSL.

JOCJIIUKEHHA CUHXPOTPOHHOTI'O PYXY Y KOMIITOHIBCBKOMY JIZKEPEJII
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€.B. bynax, I1.1. I'naoxkux, B.B. Ckomopoxoe

JociimkeHo TIOOBKHIO TUHAMIKY €IeKTPOHHHX 3TYCTKIB Y HArpoMaKyBadi 3 MaIUM KOe(iI[ieHTOM YIaKOBKH
opOiT Ta BEJMKHM CHEPreTUYHUM PO3KUIOM €JIEKTPOHIB y My4Ky. PO3riIsHYTO CTpYKTYpY (pa30BOro mpocTropy Ta
Horo nedopmanito mpu 3MiHI mapaMeTpiB HarpoMaKyBaJbHOTO Kinblsl. [lokazaHO 3aiexHICTh po3MipiB obiacTi
CTIHKOCTI ITOJJOBXKHBOTO PYXY BiJI TapaMeTpiB HarpoMapKyBaya IpH HENiHIHHIN CTPYKTYpi piBHSIHB PYyXY.
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