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The longitudinal dynamics of electron bunches with a large energy spread circulating in the storage rings with a 
small momentum compaction factor is considered. Also the structure of the longitudinal phase space is considered as 
well as its modification due to changes in the ring parameters. The response of an equilibrium area upon changes of 
the nonlinear momentum compaction factor is presented.
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1. INTRODUCTION
Engagement of electron storage rings for production 

of x rays through Compton scattering of laser photons 
against ultra-relativistic electrons was proposed in 1998 
[1]. Two basic schemes exist so far. One of them suppo-
ses use of electron beams with unsteady parameters [2] 
and  applies  the  continual  injection  (and  ejection  of 
circulating bunches by the next injecting pulse) of dense 
intensive bunches. The second scheme is based on the 
continuous circulation of bunches. To confine the bun-
ches  acquired  a  sufficiently  large  energy  spread  (see 
[3]), a lattice with a small controllable momentum com-
paction factor is proposed to employ [4].  Longitudinal 
dynamics  in  the  small  compaction  factor  lattice  is 
governed not only by the linear effects of the momentum 
deviation but by the nonlinear ones as well.

In  Compton  sources  storing  the  bunches  with  the 
large energy spread which can be as high as a few per-
cents,  ring's  energy acceptance  becomes  compared  to 
the  energy  spread.  To  get  proper  lifetime  of  the 
circulating  electrons,  the  energy  acceptance  σ ≡ max  
(E-Es)/Es (Es is  the  energy  of  synchronous  particle) 
should be high enough.

Within a linear approximation according to the ener-
gy deviation, the acceptance can be increased either by 
enhancement of the radio frequency (rf) voltage,  Vrf, or 
by decreasing of the linear momentum compaction fac-
tor α0 since σ ∝  (Vrf / α0 )½.

The  paper  presents  result  of  study on the longitu-
dinal dynamics of electron bunches circulating in stora-
ge  rings  with  a  small  linear  momentum  compaction 
factor α0. Structure of the phase space is considered and 
its deformation with changes in the ring lattice parame-
ters. In particular, the size of stable area as a function of 
the rf voltage and momentum compaction is evaluated.

2. FINITE-DIFFERENCE MODEL
Let us consider a model of the ring comprised only 

two components: a drift and an rf cavity. For the sake of 
simplicity we will suggest the cavity infinitely short, in 
which the particle momentum (energy) suffer an abrupt 
change while the phase of a particle remains unchanged. 
On the contrary, the phase of a particle traveling along 

the drift  changes while the energy remains invariable. 
The longitudinal motion in such idealized ring will be 
described  in  canonically  conjugated  variables  φ (the 
phase about zero voltage in the cavity) and the momen-
tum  p ≡ (γ−γs)/γs equal  to the relative deviation of the 
particle  energy  from  the  synchronous  one  γs is  the 
Lorentz factor of the synchronous particle). 

To  study  systems  able  to  confine  the  beams with 
large energy spread, one needs to account not only the 
linear part of the orbit deviation from the synchronous 
one, but nonlinear terms as well:
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where D1 and D2 are the dispersion functions of the first 
and second orders, respectively.

Accordingly, relative lengthening of a (flat) orbit is 
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where  L0 is  the  length of  synchronous orbit,  ρ(s) the 
local radius of curvature,  s the longitudinal coordinate. 
The coefficients α0 and α1 are determined as
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In accordance with the definitions for α0 and α1, the 
momentum compaction factor αc can be written as 

++≈= p
dp
dL

Lc 10
0

21 ααα . (4)

To study the phase dynamics in a storage ring with 
small momentum compaction factor α0, the next terms of 
expansion of the compaction over the energy deviation 
should be accounted for,  hence  − higher  terms in the 
sliding factor  η [5-7].  Magnitude of  η characterizes a 
relative  variation  of  the  phase  due  to  changes  of  the 
particle velocity and orbit length. It is determined by the 
relation
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φ
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with η0 and η1 having been determined by 
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The finite-difference equations for the phase  φ and 
the  variation of  relative  energy  p in  the  model  under 
consideration read

( ) τκκφφ ∆++= 2
10 iiif pp ; (7a)

τφ ∆−= frfif Upp sin , (7b)
where 
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L
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the subscripts i and f correspond to the initial and final 
values, respectively. The dimensionless variable τ = tβc/
L represents time expressed in number of rotations (t is 
time, βc the velocity of a particle). The factors κ0 and κ1 

at a large γs are determined by the expressions κ0 = 2πh
η0 ≈ 2πhα0,  κ1 = 2πhη1 ≈ 2πh(α0+α1) (h is the harmonic 
number).

From Eqs. (7), differential (smoothed) equations can 
be deduced. As it  seen, the RHS of (7b)  contains the 
final value of the phase φf expressed via the initial value 
φi and momentum pi by the equation (7a). 

Let us expand sinφf into series of powers of ∆τ:
( )( )τκκφφ ∆++= 2

10sinsin iiif pp ≈

( ) τκκφφ ∆++≈ 2
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Since  ∆τ cannot  be  regarded  as  infinitesimal  (for-
mally Eqs. (7) present a full turn, ∆τ = 1), then the linear 
term can be neglected if κ0pi+κ1pi

2 . In the considered 
case it can be done since maximum of the energy spread 
does  not  exceed  a  few percents,  and  the  momentum 
compaction  factor  α0 supposed  small.  From  these 
assumptions, finite difference equations reduce to
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3. DIFFERENTIAL MODEL
Noting  of  formal  similarity  of  Eqs. (8) to  the 

canonical Hamilton equations describing a mathematical 
pendulum,  we  can  use  a  smoothed  analog  to  these 
equations (a differential substitute for a finite-difference 
equation, ∆τ→0) to facilitate analysis of the motion 
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A Hamilton function associated with (10) possesses 
a  specific  form  with  the  cubic  canonical  momentum 
term

( )φκκ cos1
23
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To analyze a phase portrait of the system, it is con-
venient to present Hamilton function of the longitudinal 
motion in the reduced form:

φµ cos1
2

~

3

~~ 23

−++= ppH , (12)

where

p
eV

Ehp
U

p
rf

s

rf

000 2~ γαπκ ≈= ; (13a)

( )
0

3
0

2
10

3
0

2
12

2 Eh
eVU

s

rfrf

γαπ
αα

κ
κ

µ
+

≈= . (13b)

Phase portraits of motion with the Hamiltonian (12) 
represented  in  Fig. 1.  The  magnitude  and  sign  of  the 
parameter  govern the topology of the phase plane. At 
zero value,   , the Hamiltonian (11) or (12) has a form 
of mathematical pendulum; its phase plane is presented 
in Fig. 1(a).

Within the interval   ≤ µ2 < 1/12, there an additional 
area of finite motion appears; this area is separated from 
the main area with the band of infinite motion as depic-
ted in Fig. 1(b). When the parameter µ exceeds the criti-
cal  value  µc

2 = 1/12 [see  Fig. 1(c)],  e.g.  1/12 ≤ µ < ∞, 
the structure of the phase plane will have changed as is 
represented in Fig. 1(d).

The dimension of a stable (finite) longitudinal moti-
on, i.e., the area comprised by a separatrix, is in direct 
proportion  with  ratio  of  the  ring  parameters.  For  the 
considered case of the nonlinear Hamiltonian (12), the 
separatrix height (size along the p axis) is determined by 
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for µ ≤ µc (14a) and µ ≥ µc (14b), respectively.
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Fig. 1.  Phase portrait  of  longitudinal  motion with  

account for the cubic nonlinearity at different values of  
the parameter  µ.  (a):  µ = 0,  (b):  µ ≤ µc,  (c):  µ = µc,,  
µ ≥ µc
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The phase width of the separatrix (dimension along 
the φ axis) is determined by expressions

πφ 2=∆ ;                                         cµµ ≤ , (15a)
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for the sub- and overcritical values of the parameter µ. 
Dependence of the phase and momentum separatrix 

extensions  on  rf  amplitude  at  fixed  other  parameters, 
which values are listed in the table, is presented in Fig. 2.

Ring parameters
parameter desig value
Accel. voltage (Volt) Vrf 4x105

Lorentz factor γ 84
Harmonic number h 32
Linear comp. factor α0 0.01
Quad. comp. factor α1 0.2

As  it  can  be  seen  from the  plot  in  Fig. 2,  while 
increasing the parameter Urf, the separatrix height grows 
up reaching its maximum, ∆p ≈ 7.1×10-2, at  Urf ≈ 3.8×1
0-4 (which is equal to the rf voltage of Vrf ≈ 16.3 kV at γ
s=84). 

With further increase in the rf voltage, the separatrix 
height remains constant.  The separatrix width remains 
constant with increase of the rf voltage up to the critical 
value Urf, then it is diminishing.

In Fig. 3, a dependence of the separatrix dimensions 
upon  the  linear  momentum  compaction  factor  under 
other system parameters fixed is presented.
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Fig. 2. Separatrix height (top) and width (bot) vs Urf

Quite the reverse to the dependence ∆φ = ∆φ(Urf), a 
dependence of the separatrix width upon the linear com-
paction  factor,  ∆φ = ∆φ(α0),  is  increasing  while  α0 

grows. At a certain critical value of the linear momen-
tum compaction factor  α0(c) (in the suggested case  α0(c

) ≈ 0.03), the width of equilibrium area has reached its 
maximum and remains constant with further increase in 

α0.  A dependence of the separatrix height on  α0 is of 
increasing within interval  0 ≤ α0 ≤ α0(c).  Then, after the 
maximum at  α0 = α0(c) this dependence becomes decli-
ning, coming to zero at a large α0. 

Since the phase volume enclosed within the separa-
trix (and, therefore, the storage ring acceptance) is pro-
portional to product of the transverse dimensions of the 
separatrix, σ  ∆p∆φ, then from comparison of the plots 
in Fig. 2 and Fig. 3 it follows that optimal working point 
is about the critical parameters.

In  addition,  it  can  be  seen  that,  dislike  a  linear 
lattice,  nonlinear  terms in  the  momentum compaction 
factor restrict the infinite increase of energy acceptance 
with  decreasing  of  the  linear  momentum compaction 
factor:  The  acceptance  increase  takes  place  while  the 
linear  compaction  is  above  certain  critical  value  α0(c), 
which is determined by the ring lattice parameters accor-
ding to equality 
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With  further  decrease  of  α0 the  acceptance  also 
decreases.
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Fig. 3.  Separatrix height (top) and width (bottom) vs α0

To validate the use of differential (smoothed) equa-
tions of  motion (10)  for  analysis of  Compton storage 
ring,  a  code  has  been  developed  based  on  the  finite 
difference equations (7). A simulated phase space port-
rait at the ring parameters listed in the table for µ ≥ µc is 
presented in Fig. 4.

From the figure it follows that the electrons can be 
confined within not only the “linear” area (minimum of 
Hamilton function (12)),  but “nonlinear” as well. (The 
nonlinear  stable  region  disappears  in  a  linear  lattice.) 
RMS sizes and the center of weight positions perfectly 
correspond  to  the  analytical  estimations  presented 
above.

148



4. SUMMARY. CONCLUSION
Results of the study on dynamics of synchrotron mo-

tion of particles in the storage rings with the nonlinear 
momentum compaction  factor  presented  in  the  paper, 
can be digested as follows:

Grounded on a simplified model of the storage ring, 
the finite-difference equations were derived. Hamiltoni-
an treatment of the phase space structure was performed. 
As was shown, the structure of the phase space is gover-
ned by ratios of the ring parameters. An analytical ex-
pression for the factor µ, which determines the topology 
of the longitudinal phase space, was derived.

Dependencies of the sizes of the equilibrium areas of 
the synchrotron motion in a nonlinear lattice were deri-
ved. Analysis of dependence of the longitudinal accep-
tance upon the amplitude of rf  voltage, and the linear 
compaction factor at the fixed quadratic nonlinear term 
was presented. 
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Fig. 4.  Distribution of  confined electrons over the  

longitudinal  phase  plane  in  a  system  with  cubic  
nonlinearity  at  µ ≥ µc;  left  bunch  corresponds  to  
“linear” case, right - to “nonlinear” (additional)

As was shown, the acceptance is growing up only to 
a  definite magnitude, which determines by the critical 
value of parameter µ = µc. It was emphasized that in or-
der to maximize the acceptance of a lattice  with  a small

linear momentum compaction factor and a wide energy 
spread  of  electrons  in  the  bunches,  the  system 
parameters should be chosen close to the critical value 
of µ.

To validate the use of smoothed equations of motion, 
a simulating code was developed. The code is based on 
the finite-difference equations. The results of simulation 
manifest a good agreement with the theoretical predic-
tions on the sizes and position of equilibrium areas.

The  results  obtained  allow to  make  the  following 
conclusion: Enlargement of the energy acceptance of a 
ring by decreasing of the momentum compaction factor 
is limited with the nonlinearity in the compaction factor. 
Decreasing of  the  linear  compaction factor  below the 
certain limit causes the reversed effect – decreasing of 
the acceptance.

Similar consequence corresponds to the build-up of 
the rf voltage: Increase of the voltage above a certain 
limit causes narrowing of possible bunch length while 
the energy acceptance remains constant. This effect can 
lead to decrease in the injection efficiency for high rf 
voltages.
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ИССЛЕДОВАНИЕ СИНХРОТРОННОГО ДВИЖЕНИЯ В КОМПТОНОВСКОМ ИСТОЧНИКЕ

Е.В. Буляк, П.И. Гладких, В.В. Скоморохов
Исследована продольная динамика электронных сгустков в накопителях с малым коэффициентом упаков-

ки орбит и с большим энергетическим разбросом электронов в пучке. Рассмотрена структура фазового про-
странства  и  его  деформация  при  изменении  параметров  накопительного  кольца.  Показана  зависимость 
размеров области устойчивости продольного движения от параметров накопителя при нелинейной структуре 
уравнений движения.

ДОСЛІДЖЕННЯ СИНХРОТРОННОГО РУХУ У КОМПТОНІВСЬКОМУ ДЖЕРЕЛІ
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Є.В. Буляк, П.І. Гладких, В.В. Скоморохов
Досліджено подовжню динаміку електронних згустків у нагромаджувачі з малим коефіцієнтом упаковки 

орбіт та великим енергетичним розкидом електронів у пучку. Розглянуто структуру фазового простору та 
його деформацію при зміні параметрів нагромаджувального кільця.  Показано залежність розмірів області 
стійкості подовжнього руху від параметрів нагромаджувача при нелінійній структурі рівнянь руху.
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