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Defects' clustering model is applied to study of the both: helium blistering in metal lattice and a thin film islands 
deposition. Plasma surface modification is investigated as a first order phase transition at a fluctuation stage. Wiener 
stochastic processes which are associated with the clustering evolution as well as with the defects motion are used. 
Brownian motion due to a  long-distance potentials of indirect  interaction blisters (or islands):  through acoustic 
phonons and Friedel's oscillations of lattice's electronic density has been modeled. Stochastic simulation has in-
volved the analyse of a follows self-organization structures: vacancy-gaseous bubbles layers (or porosity) and is-
lands chains on the surface with roughnesses. 
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1. INTRODUCTION
The evolution of humanity needs new materials with 

specific properties and as result it, development of nan-
otechnologies. The paper deals with computer simula-
tion of  properties  of  nano-modified materials  and de-
posited thin films also as defects in materials which are 
planed  as  thermonuclear  technologies  and  materials. 
Self-organization widely known today: among them are 
the processes of streamlining the particles movement in 
plasma both recreated in laboratory scale plant and ob-
served in nature. This process depends on transforma-
tion of energy received from outside into heat; in that 
case the groups of waves and particles intensively inter-
act in vast space, and this determines probability for for-
mation in plasma of stable large-scale structures [1,2]. 
The  emergence  (without  special  outside  influence)  of 
streamlined structures and forms of  movement on the 
basis of the initially accidental, unregulated ones are de-
scribed  as  self-organization.  And  the  fact  is  that  the 
whole system where this takes place acquires properties 
that were lacking in its parts [3]. Typical of such phe-
nomena, nonlinear in there nature is of course a great 
number  of  closely  interacting  independent  parameters 
and they always depend on energy received from out-
side. Also, in this way, it exists the fundamental prob-
lem: defects' origin in condensed matter or on the sur-
face solid body models which can be seen as a plasma-
like media evolution. It has to be associated with transi-
tions from chaos to self-organization and back: So, here 
is extremely difficult to working out this problem. The 
most promising way in this direction is plasma comput-
er simulation [2]. The problem of the phase transition at 
inequilibrium stage kinetic description is introduced by 
stochastic  simulation  method  [3,4].  New  approach  is 
based on the strict results of the probability analysis of 
equations of mathematical physics [5]; the kinetic theo-
ry of plasma and rarefied gases [6]; the theory and prac-
tice of numerical experiment in non-linear plasma simu-
lation [2]. The progress in computer engineering allows 
us  to  see  the  overall  picture  of  initial  stage  of  phase 
transition in detail the behavior of defects origin, reten-
tion of vacancy-gaseous bubbles into lattice. The defects 
(flaws) have been stratificated in lattice as defects layers 
near surface. The development of this structure of de-

fects leads to following: porosity, swelling, flacking and 
others harmful effects. Plasma- surface interaction is de-
picted as a plasma-like media with the adequate mathe-
matical  description  of  various  dynamic  processes 
brought about the construction of models taking into ac-
count the random fluctuations of the trajectories of these 
processes. The large number of stochastic dynamical in-
dependent variables {x1(t),...,xN(t)} are obeyed to the 
set of Ito-Stratonovich stochastic differential equations 
/SDE/. The SDE system solution is connected with the 
study of "forward" and "backward" Kolmogorov equa-
tions  of  parabolic  type  for  distribution  density  of 
Markov process. The relationship SDE solution to linear 
parabolic  partial  differential  equation [5,7],  absolutely 
stable algorithms for the given integration step size [7] 
and  modification  of  Artem'ev  method  for  SDE  with 
non-linear  coefficients  solution  [4,5,8-12]  give  us  a 
powerful tool for self-organization structures detection. 
Helium ions and metal lattice would constitute a "open" 
system as  well  as  the  defects  interaction  each  others 
leeds  to  specific  form of  self-organization  into  phase 
spaces  which  associated  with  blistering  problem.  We 
can also to observe the appearance of the fundamental 
properties of loss of stability in system regarded as a 
medium with large number degree of freedom. The in-
sight into the kinetic description of phase transition can 
be extended by determination of distribution function of 
gaseous phase in a bubbles versus the both: sizes and 
coordinates.  Defects appears into lattice under plasma 
action on the time scale of interest when the medium 
state  is  strongly  non-equilibrium.  Basic  macroscopic 
characteristics (the so-called moment of the distribution 
function) are obtained by averaging the non-equilibrium 
kinetic  distribution function.  The defects (flaws) have 
been stratificated in  lattice as defects  layers  near  sur-
face. The development of this structure of defects leads 
to  following:  porosity,  swelling,  flacking  and  others 
harmful  effects.  High  temperature  blistering  (or  un-
charged defects clustering model) of He ions on a sur-
face Ni is developed in two time scales no later than 10-4 

s.  under  follows  parameters  of  plasma  beam:  energy 
E=10 keV, ions flux density and dose approximately is 
equal to 1016.
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2. STOCHASTIC SIMULATION MODEL
We start simulation the phase transition by numeri-

cal  approach,  using  the  model  of  diffusive  Markov's 
process (MP) in a phase space {G} with size g of arising 
bubbles as well a liquid metal thin film islands: {g(t),t≥
0}, g>2. Here the g(t=0)=g0, size g means the number of 
unit volumes of "condensing" substance in the bubble 
nucleus (however, it is possible also to consider the ra-
dius r of spherical bubbles or hemispheres drop of liq-
uids on the surface). The maximum of cluster size (let 
us name this nucleus- cluster) is determined by condi-
tions of  stability of bubble.  Collisions and fluctuation 
processes  has  produced  the  nuclei  of  new  phase 
(gaseous into lattice as well liquid on the lattice surface) 
out  of  "super  saturation"  condition  which  can  be  de-
scribed by Ito stochastic differential equations/SDE/the 
both are statistically equivalent to equations of Fokker-
Planck-Kolmogorov  (FPK)  and  Boltzmann-like  (or 
Leontovich), this allows us to take the numerical solu-
tion of SDE systems is to be seen a method for the solu-
tion  of  Mathematical  Physics  Equations  (MPE)  for 
study  non-equilibrium  first-kind  transition  processes. 
The coefficients of both problems (SDE and MPE) are 
related by definitions and properties of non-look-ahead 
functionals  of  Marcov's  random processes.  The  algo-
rithms for  solution of  a  set  of  linear  Ito-Stratonovich 
SDE [5] by with constant coefficients have been modi-
fied for simulation and analysis of the problems with 
functional-coefficients [3,7,8], in case of heterogeneous 
to non-equilibrium stage of "condensation" of gaseous 
particles. We assume that formation of clusters of de-
fects and evolution of their size is to be described by ki-
netic equation for f(x,y,t) of transitional probability den-
sity  of  a  random MP {X(t),t≥0}.  Here  we talk  about 
Kolmogorov's  equation  (i.e.,  about  partial  differential 
equations  of  parabolic  type),  which  is  related  with 
Wiener  process.  The  kinetic  equations  for  Brownian 
particle  are  partial  integral-differential  equations  [3,7] 
and its have laborious methods for solving. Rate of bub-
ble/cluster  growth  (or  degradation)  and  its  migration 
have different characteristic time scales which equal for 
blistering τg ≈ 10-9, τr   ≈ 10-8 s and τg ≈ 10-8, τxy  ≈ 10-7 s 
for film covering correspondingly. Thus, kinetic equa-
tions on a discrete time grid are solved by technique of 
splitting in terms of physical processes, and every stage 
is represented by its stochastic analogue. Interaction be-
tween  bubbles/clusters  is  indirect,  through  lattice 
phonons and electron density oscillations [9-16]. The ki-
netics equations after physical processes split look like 
following,  W is Wiener process. The kinetic equations 
for  Brownian  particle  are  partial  integral-differential 
equations [3,7] and its have laborious methods for solv-
ing.
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Rate of bubble/cluster growth (or degradation) and its 
migration have different characteristic time scales which 
equal for blistering τg ≈ 10-9, τr  ≈ 10-8 s and τg ≈ 10-8, τxy

≈10-7 s for film covering correspondingly. Thus, kinetic 
equations  on a discrete  time grid  are solved by tech-
nique of splitting in terms of physical processes, and ev-
ery stage is represented by its stochastic analogue. Inter-
action between bubbles/clusters is indirect, through lat-
tice  phonons  and  electron  density  oscillations  [9-16]. 
The  kinetics  equations  after  physical  processes  split 
look  like  following,  here  is  molar  volume  of  liquid 
molecules,  are  temperature  and  density  of  vapour 
molecules.  We consider  single  spherical  nucleus  with 
radius of gaseous or liquid cluster r, comprising g single 
droplets  with  molar  volume.  Sα is  source  of  vapour 
which  generates  ion  with  fα − maxwell  ion  function, 
which is characterized by temperature 2500 K, g is the 
number of atoms which is consisted in island-clusters, 
Dg is the non-linear diffusion coefficient in the space of 
cluster sizes; f(g) is the bubble size distribution function 
– the probability to find the cluster with size g in inter-
val of values of g [g,g+∆g], ∆Φ is the Gibbs energy, Mg 

is the cluster mass, γ is constant of friction, distribution 
function f(r) is the islands space function, r is the posi-
tion  of  cluster  mass  centre  in  orthogonal  coordinates 
system: xleft = -200, xright = 200, yleft = -200, yright = 200, 

)(rU 
 is the potential of long-range clusters interaction 

between them through phonons and oscillation of elec-
tron density. The modelling 3-dimensional region is pe-
riodic across two coordinates (x and y) across the third 
coordinate (axis z): on top the region contacts with plas-
ma, on bottom we have reflection from crystal  lattice 
layers  undisturbed  with  vacancy  and  helium impurity 
negligible  concentration  (for  simplicity  vacancies  de-
scription here is not demonstrated). There are equations 
involving  partial  derivatives  of  blister  coordinate  into 
lattice and its size measured in number of gaseous parti-
cle without compression.
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where )( αχβχη −=Φ aa  is part of Gibbs potential 

connected with difference of chemical potential of phas-
es (gas in blister and metal lattice/vapour and liquid), c 
is part of Gibbs potential concerned with elastic force of 
lattice reaction for blister and with weight of cluster for 
thin  films  formation,  tensions  on  boundaries  between 
different phase are taken into account using,  ∆Φr con-
siders bubble/cluster place in lattice/on surface, ∆Φbreak 

concerns with relcases of part of connections in lattice 
for blistering, Nb is number of broken bonds, ∆break is the 
energy required for breaking of a single bond with lat-
tice.  )( αχβχ −  is difference of chemical potential of 
phases
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The  common  form  of  diffusion  coefficient  in  the 

space of defects sizes is Dg=Dg0g2/3, Dg0 is calculated co-
efficient.

The long- range part of the interaction between un-
charged defects in dielectric crystals is elastic interac-
tion through the acoustic phonons. The indirect interac-
tion take place in metal lattice also via influence Friedel 
oscillation in electron density, for spherical Fermi sur-
face analytically derived the dependence upon the dis-
tance between defects. Model assumption in approxima-
tion of potential:  distance  R between defects has been 
selected as a distance between centre of mass blisters. 
The  correlations  which  it  appear  in  system in  conse-
quence of this indirect interaction of defects each with 
another. The potential of indirect interaction, which in-
fluences on migration defects such as bubble in lattice 
and  clusters  on  surface,  can  be  presented  as 

dsdd UUU +=  where Udd is potential of indirect inter-
action  between  defects  of  one  kind  (blister-blister  or 
cluster-cluster), 
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Uds is potential of indirect interaction between defects of 
two  different  kinds  (between  bubble  and  surface  for 
blistering and between liquid cluster of less refractory 
metal on substrate surface of more refractory metal and 
linear dislocation on surface or in near surface region).
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brb, arb, crb, brc, arc, crc, bs, as, cs, bd, ad, cd are model coef-
ficients, z of surface is equal zero for blistering and z of 
dislocation is equal dislocation depth for thin film for-
mation, if dislocation is located under surface and dislo-
cation z is equal zero if dislocation is located on sub-
strate surface. 

In case of blistering (the situation of open system) is 
created  by  a  flux  of  inert  gas  atoms: 

),,,(),( tzyxDtrD rr =
 is  the  diffusion  coeffi-

cient for space {R == (x, y, z)}, γ is the dissipation fac-
tor. As for coefficients of stochastic diffusion used for 
modeling of bubble walk, we introduced a temperature 
dependence and accounted the nonlinear coefficients by 
expression:
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D0 = 3,73⋅10-7 cm2/s, Em = 0.35 eV, x0, y0 , z0 are the ini-
tial values of coordinates  x, y, z of a cluster. Diffusion 
coefficient looks similar form for case of thin film for-
mation. 

3. STOCHASTIC SIMULATION NUMERI-
CAL SCHEME

Kinetic  equation  are  changed  on  its  stochastic 
analogs  [3,7,11-16],  stochastic  differential  equations 
/SDE/  are  solved  used  modified  authors  Artem'ev 
method  [17].  SDE  and  modifications  of  Artem'ev 
method for these models can be found in more early pa-
pers of authors [11-16]. To solve a system of SDE with 
functional-coefficients, it is required to construct a se-
ries expansion for exact solution of Cauchy problem:

.
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A modified Artemiev’s method was used; it is a sec-
ond-order accuracy method, with infinite domain of sta-
bility (according to methods developed for  solving of 
SDEs)  [17].  The  modification  from  the  original 
Artemiev’s method is that the coefficients in SDE are 
essentially nonlinear and depend on flaw distributions 
on their sizes and coordinates. The use of Stratonovich’s 
form for SDE makes possible to take a standard white 
noise instead of random function ξ (t), and this simpli-
fies the calculation procedure of stochastic integral for 
the  Wiener  process  in  realization  of  the  numerical 

method. As a sample, we can take the equation for cal-
culation of the bubble size. For the ith trajectory of dif-
fusive Markov’s process its values  gn+1 and zn+1 at the 
time moment  n+1 can be calculated through these for-
mulas:
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In this method gn, zn are the approximation of SDE sys-
tem solution at grid points by time {t}, h, hz is the time 
step for size and position changes correspondingly, I is 
the unit matrix,  ξn is the sequence of independent ran-
dom numbers with a zero expected value and unit dis-
persion. While modeling the SDE solution on a comput-
er,  the  values  of  ξn can  be  calculated  by  formula 

)2cos(log2 21 π ααξ −=n ,  where  α1  and  α2 are random 
numbers uniformly distributed in the interval (0,1).

We are able to present operator's scheme of comput-
er simulation as superposition of the operators A∆g, ABr, 
AUD, AF, where A∆g –operator of size change; ABr –oper-
ator of lattice broken (for blistering only); AUD- operator 
of  space  diffusion,  defects  interaction  and  interaction 
between defects of two different kinds (between bubble 
and surface for blistering and between liquid cluster of 
less refractory metal on substrate surface of more refrac-
tory metal and linear dislocation on surface or in near 
surface region); AF= AFus+ ASurf, AFus- operator of defects 
fusions.  The  fusion  of  defects  takes  place  if 

fjidji aggrrr ∆++≤− /)( 3/13/1
,  where  0≤ ∆f ≤a 

(rd is radius of He for blistering or radius of adatom for 
nanofilm,  a is lattice parameter of substrate material). 
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ASurf has  meaning only for  blistering and corresponds 
with blister reflection from surface or destruction on it. 

minz  = 0,  maxz
 = 400; it is assumed that the cluster 

dies  on  the  surface  if  b)32( Rz ≤  (here 
3

Heb grR =
 is the bubble radius, rHe is the helium 

radius).
4. RESULTS AND DISCUSSION

Note  that  blistering  and  thin  film  formation  have 
similar stochastic  characters and are described similar 
equations. Used approach allows us to receive nonequi-
librium distribution  functions  of  bubbles/clusters  con-
trasted with defect size and its space position, in terms 
of its we receive evaluation of order parameter for each 
problems and mathematical expectations of defects size 
and others characteristics such as distance from the sur-
face,  porosity evaluations  of  several  solids layers and 
the calculated tensions due to blistering, for example. 
We should like to summurize results  of simulation of 
fluctuation stage of high-temperature blistering. In our 
opinion, the most interesting results are: the self-organi-
zation of bubbles are observed, blisters form quasi-lat-
tice and blisters chains are formed athwart to incident 
ions fluxes; the greatest porosity and tensions are ob-
served on depths of ∼ 0.85 Rp and ∼0.35Rp (Fig.1), Rp is 
middle depth of projection run, these depths correspond 
to locations of big and small blisters (Fig.2), which are 
observed in laboratory experiments; the most rapid blis-
tering development is take place if temperature of sub-
strate material equals 0.47 of melting temperature. The 
porosity  can  be  considered  as  the  order  parameter  of 
first-kind transition for blistering. The porosity is
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(Fig.1), where  Va is total examined volume,  Vl is layer 
volume,  N=10 is number of blister,  g0 is initial blister 
size in number He in blister,  f(g0) is initial distribution 
function from blister sizes. The fluence is 1017 ions/cm2, 
energy of He ions is 10 keV, temperature is 1000 K for 
presented calculation. Authors used 106 trajectory statis-
tics  for  kinetic  distribution  functions  calculated.  Two 
maximums of porosity are good noticeable. 

Fig.1. The figure 1 shows the relative porosity of differ-
ent solid layers as function from layer depth. Z is layer 

depth from surface under irradiation measured in lat-
tice parameters

Fig.2. The distribution function from blister size (ab-
scissa axis, size is measured in Å) and depth (ordinate 

axis, depth is measured in lattice parameter) is present-
ed by colours on this picture

The maximum located on depth approximately 0.85 Rp 

(Rp is middle depth of projection run, for examined case 
Rp=70 nm) is  corresponded with “big” blisters.  “Big” 
blister  can  growth  to  1  micrometer.  The  radiuses  of 
"big" blisters at finish of fluctuating stage are 10...14 Å 
(Fig.2). The maximum located on depth approximately 
0.35 Rp is conformed to “small” blisters which end sizes 
can be 10-8...10-7 m. The radiuses of "small" blisters at 
finish of fluctuating stage are 2...4 Å (Fig.2).

The most interesting results from thin films forma-
tion are: I) three stage of cover formation during fluctua-
tion stage are discovered. The first stage lasts from 0 to 8⋅
10-7 sec,  it  is  stage  of  slow development.  The  second 
stage continues from 8⋅10-7 sec to  5⋅10-5 sec and it  is 
stage of quick growth of thin film. The third stage lasts 
from 5⋅10-5 sec to 10-4 sec and it is notable for decelera-
tion of growth velocity; II)  The study of influence of 
dislocation depth on thin film formation indicates that 1) 
self-organization of clusters are observed, nanofilm for-
mation begins on surface defects in particular on dislo-
cations; 2) the dislocation influence is important if  its 
depth is less then 5 lattice parameters;

Fig.3. The dependence of the ratio of probability of lo-
cation clusters on projection of dislocation line on sur-
face from probability of location clusters outside pro-
jection of dislocation line on surface from dislocation 

depth is presented on this pictur
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3) if dislocation depth is more then 5 lattice parameters 
that probabilities of cluster location on dislocation line 
and outside it are equal; 4) the ratio of probability of lo-
cation clusters on projection of dislocation line on sur-
face from probability of location clusters outside projec-
tion of dislocation line on surface reduces with increase 
of depth and equals 1 when dislocation depth is more 5 
lattice parameters of substrate material. This is non-lin-
ear function (Fig.3); 5) the projection of dislocation line 
on surface can be considered as center of nanofilm for-
mation if dislocation depth is less 5 lattice parameters; 
6)  if  dislocation  locates  on  surface  that  most  heavy 
growth takes place on dislocation. III) The ratio of cov-
ering  square  at  the  present  situation  from  covering 
square at the initial time moment can be considered as 
order parameter for problem of nanofilm formation. The 
evaluation of this ratio is presented on Fig.4.

Fig.4. The ratio of total islands square at the present  
situation from total islands square at initial time mo-
ment is shown. The time in τxy∼10-7 s is put off on ab-

scissa axis
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КЛАСТЕРИЗАЦИЯ РАДИАЦИОННО-СТИМУЛИРОВАННЫХ ДЕФЕКТОВ И САМООРГАНИЗА-
ЦИЯ ПРИ МОДИФИКАЦИИ ПОВЕРХНОСТИ 

А.Л. Бондарева, Г.И. Змиевская 
Модель кластеризации приложена к изучению: гелиевого блистеринга в металлах и осаждение остров-

ковых тонких пленок. Модификация поверхности плазмы исследована как фазовый переход 1-го рода на 
флуктуационной стадии. Исследован Винеровский стохастический процесс, который ассоциируется с эво-
люцией кластеризации и с движением дефектов. Промоделировано броуновское движение благодаря даль-
нодействующим потенциалам непрямого взаимодействия блистеров (или островов): через акустические фо-
ноны и Фриделевские осцилляции электронной плотности. Стохастическое моделирование включает анализ 
следующих самоорганизующихся структур: слои вакансионно-газовых пузырей (или пористость) и неупоря-
доченные цепочки островов на поверхности. 

КЛАСТЕРІЗАЦІЯ РАДІАЦІЙНО-СТИМУЛЬОВАНИХ ДЕФЕКТІВ І САМООРГАНІЗАЦІЯ ПРИ 
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МОДИФІКАЦІЇ ПОВЕРХНІ 
А.Л. Бондарева, Г.І. Змієвська 

Модель  кластерізації  прикладена  до  вивчення:  гелієвого  блистерінгу  у  металах  та  осадженню 
острівкових  тонких  плівок.  Модифікація  поверхні  плазми досліджена  як  фазовий  перехід  1-го  роду  на 
флуктуаційній  стадії.  Досліджено  Вінерівський  стохастичний  процес,  котрий  асоціюється  з  еволюцією 
кластерізації  та  рухом  дефектів.  Промодельовано  броунівський  рух  завдяки  далекодіючим  потенціалам 
непрямої  дії  блістерів  (або  островів):  через  акустичні  фонони  та  Фриделевські  осциляції  електронної 
густини. Стохастичне моделювання включає аналіз наступних структур самоорганізації: шари вакансійно-
газових пузирів (або пористість) і неупорядковані ланцюги островів на поверхні. 
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