РОЛЬ ТЕПЛОФИЗИЧЕСКИХ УСЛОВИЙ В ПРОЦЕССЕ ФОРМИРОВАНИЯ СТРУКТУРЫ ПРИ НАПРАВЛЕННОЙ КРИСТАЛЛИЗАЦИИ ЖАРОПРОЧНЫХ СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ

В.М. Ажажа, В.Я. Свердлов, А.Н. Ладыгин, Т.Ю. Рудычева, П.Д. Жеманюк*, Н.А. Лысенко*, В.В. Клочихин*, А.А. Педаш*

Национальный научный центр «Харьковский физико-технический институт»; * OAO «Momop-Cuy»

Исследовано влияние теплофизических условий в процессе формирования структуры при направленной кристаллизации никелевых сплавов НВ-4 и ЖС32-ВИ. Изучено влияние температурного градиента на фронте кристаллизации, скорости направленной кристаллизации и интенсивности теплоотвода на структуру и свойства монокристаллов сплавов НВ-4 и ЖС32-ВИ. Исследована структура и механические свойства сложнолегированного никелевого сплава ЖС32-ВИ, содержащего в своем составе рений и тантал. Определена связь условий кристаллизации гомогенизирующего отжига с тонкой структурой монокристаллов и их механическими свойствами. Показано преимущество высокоградиентной направленной кристаллизации по сравнению с серийной промышленной технологией в получении монокристаллов с высокими эксплуатационными характеристиками.

ВВЕДЕНИЕ

Исследования структуры и свойств жаропрочных сплавов на никелевой основе являются актуальной задачей, связанной с улучшением эксплуатационных характеристик изделий аэрокосмической техники, наземных энергетических установок а также элементов конструкций атомных реакторов. В технологии изготовления монокристаллических лопаток из сложнолегированных никелевых сплавов для газотурбинных двигателей используется затравочный метод литья [1]. В качестве затравки используются монокристаллы сплава НВ-4 [2], содержащего номинально35 %W и 65 %Ni. Роль затравки состоит в передаче монокристаллической лопатке кристаллографической ориентации [001] вдоль ее вертикальной оси Z. Структурное совершенство монокристаллической затравки имеет важное значение для получения высокого выхода годных монокристаллических лопаток. Влияние условий кристаллизации (скорость направленной кристаллизации $R_{\kappa p}$ и градиент температуры G_т на фронте кристаллизации) на микроструктуру и свойства монокристаллов сплава НВ-4 подробно изучено в [3]. Было показано существенное улучшение качества получаемых затравок при направленной кристаллизации сплава НВ-4 в условиях высокого градиента температур (G_т 20 °/мм) по сравнению с затравками, изготовленными по серийной технологии на промышленных установках УВНК-8П (Gт ≈8 °/мм). Исследования, направленные на поиск оптимальных параметров процесса направленной кристаллизации жаропрочных сплавов [2,4], позволили установить, что повышение градиента температуры на фронте кристаллизации содействует получению более качественной структуры жаропрочных сплавов. В данной работе приводятся данные о влиянии теплофизических

условий (скорость направленной кристаллизации R_{кр.} градиент температуры на фронте направленной кристаллизации G_T , интенсивность теплопередачи) на процессы формирования структуры при направленной кристаллизации никелевых сплавов НВ-4 и ЖС32-ВИ и их свойства.

МАТЕРИАЛЫ И МЕТОДИКА ИССЛЕДОВАНИЯ

Исходным материалом для получения монокристаллов бинарного никель-вольфрамового сплава служил сплав НВ-4 (ТУ 1-92-112-87). Состав сплава НВ-4 согласно ТУ приведен в табл.1. Контроль элементного состава сплава НВ-4 проводили методом масс-спектроскопии с регистрацией на фотопленку. Исследование проводили на лазерном масс-спектрометре высокого разрешения с двойной фокусировкой по Маттауху-Герцогу ЭМАЛ-2 и микрофотометру, регистрирующему НФО-451. Результаты элементного анализа приведены в табл.1.

Монокристаллы сплава НВ-4 получали методом направленной кристаллизации по-Бриджмену в высоком температурном градиенте (G_т ≈20 °/мм), который создавался кристаллизатором с жидкометаллигаллиевым теплоносителем. Скорость направленной кристаллизации изменяли ступенчато в интервале 0,4...20 мм/мин. Подробно методика получения монокристаллов сплава НВ-4 описана в [3].

Исходным материалом для получения монокристаллических образцов сложнолегированного никелевого сплава ЖС32-ВИ служили отходы монокристального литья лопаток ГТД из сплава ЖС32-ВИ методом высокоскоростной направленной кристаллизации (ТУ 1-92-177-91). Отходы предварительно подвергались очистке, каждая заготовка проходила контроль химического состава. Для усреднения

состава шихтовку осуществляли методом квартования. Монокристаллы получали направленной кристаллизацией по-Бриджмену с использованием ориентированных затравок из сплава Ni-W[2]. Затравки имели ориентацию [001]. Направленную кристаллизацию проводили в литейных формах из электрокорунда, предварительно заполненных жидким расплавом, путем перемещения из горячей зоны, создаваемой нагревателем, в кристаллизатор.

Керамическая форма размещалась в графитовом тигле, который, в свою очередь, находился на водоохлаждаемом штоке. С целью изучения влияния интенсивности теплоотвода на фронте кристаллизации на структуру и свойства монокристаллов применялись три разновидности монтажа керамических форм в графитовом тигле. В первом варианте пространство между керамической формой и графитовым тиглем было свободным (Патент Украины №49616А от 03.01.2002). При таком расположении элементов плавильного блока достигается высокая однородность температурного поля в расплаве. С другой стороны, интенсивность отвода тепла, выделяющегося на фронте кристаллизации, ослабляется в следствие большого теплового сопротивления в системе расплавленный металл – керамическая форма - кристаллизатор. Во втором варианте с целью усиления теплоотвода свободное пространство между керамической формой и графитовым тиглем заполнялось гранулированным графитом (Патент Украины №63621А от 15.05.2003). И наконец, в третьем варианте в графитовом тигле делали вырезы для непосредственного контакта керамических форм с галлиевым теплоносителем, обеспечивая тем самым интенсивный отвод тепла с фронта кристаллизашии.

В лабораторных условиях скорость кристаллизации $R_{\kappa p}$ составляла 10 и 20 мм/мин. Для сравнения были также получены образцы монокристаллов ЖС32-ВИ методом высокоскоростной направленной кристаллизации в промышленной установке УНВК-8П со скоростью кристаллизации $R_{\mbox{\tiny kp}} = 10 \mbox{ мм/мин}$ (градиент кристаллизации составлял при этом ≈8 °/мм). Монокристаллические образцы представляли собой стержни цилиндрической формы диаметром 9 мм и длиной ~150 мм, из которых готовились образцы для металлографических исследований и механических испытаний. Механические свойства определяли вдоль оси образцов, т.е. в кристаллографическом направлении [001]. Микроструктуру образцов исследовали с помощью оптических микроскопов Neophot-32 и MMP-4, а также методом электронной растровой микроскопии с использованием микроскопа JSMT-300. Определение кристаллографической ориентации и степени совершенства монокристаллов проводили методами рентгеноструктурного анализа на дифрактометрах HZG-4A12 и ДРОН-4 в СиК_а-излучении. Содержание кислорода и азота в сплаве ЖС32-ВИ определяли на установке ON-900 фирмы ELTRA.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖЛЕНИЕ

Монокристаллы сплава НВ-4 в лабораторных условиях получали, используя первый вариант размещения керамической формы с расплавом в графитовом тигле. Оптимальные скорости направленной кристаллизации для получения наиболее совершенной структуры монокристаллов сплава НВ-4 находятся в интервале 3...7 мм/мин [3]. При таких скоростях направленной кристаллизации в условиях высокого градиента температуры на фронте кристаллизации ($G_T \approx 20$ °/мм) формируется высокодисперсная ячеистая микроструктура с параметром ячейки $\lambda \approx 260...200$ мкм (см. рис.1,а). В промышленной установке УВНК-8П, обеспечивающей на фронте кристаллизации значение градиента температуры $G_T \approx 8$ °/мм, формировалась более грубая

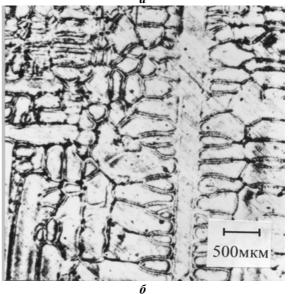


Рис. 1. Поперечные шлифы монокристаллов сплава HB-4, закристаллизованных в условиях различного температурного градиента на фронте кристаллизации: $a - G_T = 20^{\circ}\text{C/мм}$, $\delta - G_T = 8^{\circ}\text{C/мм}$ (серийная технология). $R_{\text{кp}} = 10 \text{мм/мин}$

дендритная микроструктура (рис.1,б). При этом кристаллизация в УВНК-8П осуществлялась путем опускания керамической формы с расплавом в ванну с расплавленным алюминием, что позволяло интенсивно отводить тепло, выделяемое на фронте кристаллизации. Отсюда можно сделать вывод, что при росте монокристаллов сплава НВ-4 главным условием, влияющим на формирование морфологии фронта кристаллизации, является градиент температуры, а интенсивность теплоотвода не играет решающей роли. Для объяснения этого факта полезно использовать модель концентрационного переохлаждения [4], согласно которой устойчивость плоского фронта кристаллизации для двойных сплавов описывается соотношением:

$$\frac{G_{\rm T}}{R} = \frac{m_{\rm L}C_0(1-k)}{kD_{\rm L}},$$
 (1)

где G_T - градиент температуры в расплаве на фронте кристаллизации; R — скорость фронта кристаллизации; m_L — тангенс угла наклона линии ликвидуса; C_0 — концентрация растворенного элемента в сплаве; κ — равновесный коэффициент распределения; D_L — коэффициент диффузии растворенного элемента в расплаве. Принимая во внимание, что $\frac{m_L C_0 (1-k)}{k} = \Delta T_{\kappa p} - \text{равновесный интервал кристаллизации сплава [1,5], выражение (1) можно записать в виде$

$$\frac{G_T}{R} \ge \frac{T_{\kappa p}}{D}.$$
 (2)

Как видно из рис.2 и согласно [3], интервал кристаллизации сплава HB-4 не превышает ~4...10 °C. Это и обусловливает относительную легкость отвода тепла, выделяющегося на фронте кристаллизации в условиях высокого градиента температуры. Сложхимический состав сплава ЖС32-ВИ, (см.табл.1), обусловливает высокую степень концентрационного переохлаждения перед фронтом кристаллизации. В результате скорость направленной кристаллизации, при которой происходит нарушение устойчивости плоского фронта при заданном значении G_T , согласно (1) уменьшается. Соответственно и переход от ячеистой морфологии к дендритному росту происходит при более низких значениях скорости направленной кристаллизации. Аналогичный вывод следует из анализа соотношения (2) применительно к сплаву ЖС32-ВИ. Интервал кристаллизации сплава ЖС32-ВИ согласно [1] составляет $\Delta T_{\kappa p} = T_L - T_S = 67$ ° (рис.3), что на порядок больше по сравнению со сплавом НВ-4. Высота жидкотвердой области на фронте кристаллизации опреде-

ляется соотношением $\frac{\Delta T_{\text{кр}}}{G_T}$ и заметно высокогради-

ентной направленной кристаллизацией, что облегчает подпитку расплавом оснований дендритов, приводит к уменьшению дендритной ликвации и более однородной структуре. Проведенный здесь анализ температурно-кинетических условий на фронте кристаллизации для сплавов НВ-4 и ЖС32-ВИ, показы-

вает, что для получения совершенной моно-

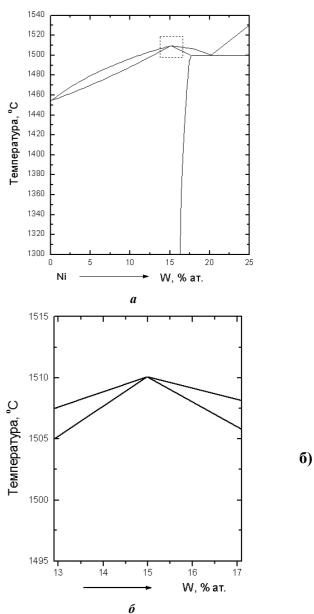


Рис.2. Диаграмма состояний системы Ni-W: a - общий вид диаграммы состояний; б - фрагмент диаграммы плавкости, выделенный рамкой на а



Рис.3. Схематическое изображение участка псевдобинарной диаграммы Ni - Σ Al, Ti, Ta, Hf, Nb [1].

130

(I- oбласть cocmaвoв литейных никелевых жаро- npoчных сплавов)

	Сплав НВ-4		Сплав ЖС32-ВИ					Коэф.
Элемент	МонокриНорма сталлы НВ-4ГУ		Варианты кристаллизации			Серийная Норма ТУ	распр. примеси в	
			1	2	3	технология	•	никеле к ^{Ni} ₀ [6]
Ni	основа	основа	основа	основа	основа	основа	основа	
C	0,046		0,13	0,15	0,14	0,16	0,120,18	0,20
Сг	0,26		4,5	4,56	4,51	4,56	4,35,6	0,86
Co	0,104		9,4	9,45	9,45	9,47	8,010,0	<1
W	32,6	3236	8,75	9,00	8,87	8,98	7,79,5	1.66
Mo	0,059		1,13	1,05	1,05	1,15	0,81,4	0.89
Al	0,022		5,50	5,65	5,65	5,65	5,66,3	0.87
Fe	0,075	≤1,0	0,16	0,10	0,10	0,24	≤1,0	0.93
Nb	0,011		1,42	1,40	1,40	1,50	1,41,8	0.86
Ta	-		3,50	3,58	3,55	3,58	3,54,5	0.74
Re	-		3,88	3,55	3,55	3,50	3,54,5	1.45
Pb	-		0,00019	0,00017	0,00015	0,00030	≤0,001	0.11
Bi	-		0,0001	0,0001	0,0001	0,0001	≤0,0005	
S	0,0013	≤0,015	0,004	0,004	0,004	0,004	≤0,001	< 0.01
P	0,00018	≤0,015	0,003	0,003	0,003	0,003	≤0,015	0.02
Si	0.021	≤0,4					_==,010	0.61
O(ppm)	-		32,4	29,8	31,5	30,6		
N(ppm)	-		9,7	9,9	8,9	9,2		

кристаллической структуры в сплаве ЖС32-ВИ, по сравнению со сплавом НВ-4, в большей степени требуется высокий градиент температуры на фронте кристаллизации и интенсивный отвод тепла, выделяющегося при кристаллизации. Это подтверждается результатами исследований монокристаллических образцов сплава ЖС32-ВИ, полученных в процессе направленной кристаллизации с различными теплофизическими условиями на фронте кристаллизации.

Изучение макроструктурного состояния монокристаллов сплава ЖС32-ВИ показало, что в процессе направленной кристаллизации монокристаллическая структура сформировалась на 6,3 % образцов, полученных по 1-му варианту со свободным пространством между керамической формой и графитовым тиглем, на 83,3 % образцов 2-го варианта отливки (пространство между тиглем и формой заполняли гранулированным графитом) и на всех (100 %) образцах, отлитых по 3-му варианту с использованием галлиевого теплоносителя. На остальных образцах выявлена поликристаллическая структура.

Максимальные отклонения направления [001] от оси Z получили на образцах, отлитых по серийной технологии и 1-му варианту (табл.2). При отливке образцов в керамические формы, где пространство между тиглем и формой заполняли гранулированным графитом (2-й вариант), отклонение направления [001] от оси Z более 12 угл.град. наблюдали на 67 % образцов. Отливка с использованием галлиевого теплоносителя (3-й вариант) со скоростью Rкр= 10 мм/мин обеспечила получение угла отклонения, не превышающего 6 угл.град., на 75 % образцов, а со скоростью 20 мм/мин - на 90 %. При этом в об-

разцах. отлитых по 2 и 3-му вариантам угол отклонения не превышал 28 угл.град.

Исследование микроструктуры полученных образцов показало, что сплав ЖС32-ВИ представляет собой сложную гетерогенную систему, основными фазами в которой являются: ГЦК-аустенит (γ -матрица) на основе никеля; интерметаллидная γ -фаза на основе Ni₃(Ti,Al); (γ - γ) - эвтектическая фаза; карбиды типа MeC и Me₂₃C₆; двойной карбид типа Ni₃W₃C; карбонитриды типа Me(C,N); карбоборид типа Me₂₃(C,B)₆ и бориды Me₃B₂, Me₅B₃, Me₂B.

Таблица 2 Угол отклонения направления [001] от оси Z в монокристаллических образцах из сплава ЖС32-ВИ

Вариант кристаллизации	Скорость кристаллизации Скр, мм/мин	Отклонение направления [001] от оси Z, угл.град.	
1	10	259	
2	10	428	
2	10	0,528	
3	20	121	
Серийная технология	10	257	

Микроструктура образцов различных вариантов отливки в литом состоянии идентична (рис.4). Расстояние между осями дендритов как первого, так и второго порядка, а также размер структурных составляющих примерно одинаковы (табл. 3,4).

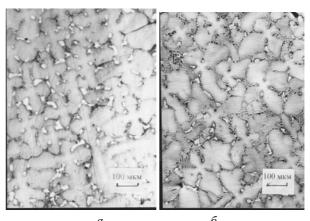
Однако следует отметить, что повышение скорости кристаллизации с Rкр.=10 мм/мин до

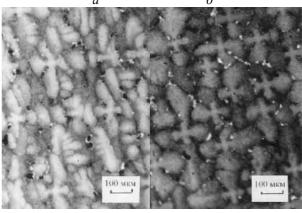
Rкр.=20 мм/мин способствует некоторому уменьшению размеров дендритных ячеек и структурных составляющих.

Таблица 3 Расстояние между осями дендритов 1- и 2-го порядков после различных вариантов отливки образиов из сплава ЖС32-ВИ

	0 000		
Вариант кристал- лизации	Скорость кристал- лизации, Rкр, мм/мин	Расстояние между осями дендритов 1-го порядка, мкм	Расстояние между осями дендритов 2-го порядка, мкм
1	10	150225	3045
2	10	100150	2035
3	10	150225	2035
3	20	120200	2030
Сер. тех-	10	150200	2535

.Таблица 4 Размер эвтектики (γ-γ') в образцах из сплава ЖС32-ВИ после различных вариантов отливки


Вариант	Скорость	Размер эвтектики (γ-γ'),			
кристалли-	кристаллиза- ции, Rкр., мм/мин	верхняя часть	нижняя часть		
1	10	3040 (35)	2840 (33)		
2	10	2840 (32)	2040 (30)		
	10	2840 (32)	2030 (26)		
3	20	2430 (26)	2026 (24)		
Серийная технология	10	2640 (32)	2440 (30)		


Примечание. В скобках даны средние значения размера эвтектики (γ - γ).

Карбиды типа МеС при всех вариантах выплавки имеют шрифтовую морфологию, образуя своеобразный каркас по междендритным пространствам (рис.5). Кроме того, из расплава при кристаллизации выделяются карбиды типа $Me_{23}C_6$. Данные карбиды имеют вид единичных глобулярных частиц. Отличить их от других карбидов можно по слабой травимости в реактиве Мураками. При этом замечено, что размеры единичных карбидов типа MeC и $Me_{23}\Gamma_3C_6$ в нижней части исследуемых образцов меньше, чем в верхней. Аналогичным образом изменяются размеры эвтектической (γ - γ)-фазы и расстояние между осями дендритов.

Интерметаллидная γ -фаза является основной упрочняющей фазой и выделяется из γ -твердого раствора в процессе кристаллизации при охлаждении в достаточно большом количестве. Даже при сравнительно небольших оптических увеличениях (порядка 500 крат и более) частицы γ -фазы различимы как в межосях, так и в осях дендритов. При увеличениии 10000 крат установлено, что γ -фаза имеет кубическую форму, образуя блоки из четырех ча-

стиц. Размер блоков упрочняющей фазы в осях дендритов составляет 0,26... 0,36 мкм, что в 1,6...3,4 раза меньше, чем в межосных пространствах. Повышение скорости кристаллизации приводит к уменьшению частиц в осях дендритов. При этом также наблюдается увеличение разницы между осями и межосями дендритов.

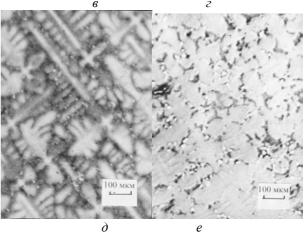


Рис.4 Микроструктура монокристаллов сплава $\mathcal{K}C32$ -ВИ, изготовленных по различным вариантам направленной кристаллизации Вариант 1: a-R=10мм/мин; $\delta-R=20$ мм/мин. Вариант 2: $\varepsilon-R=10$ мм/мин. Вариант 3: $\varepsilon-R=10$ мм/мин; $\delta-R=20$ мм/мин. Серийная технология: $\varepsilon-R=10$ мм/мин. $\varepsilon-R=10$ мм/мин.

Интенсификация теплоотвода в третьем варианте направленной кристаллизации приводит к существенному изменению микроструктуры. При скоро-

стях кристаллизации 10 и 20 мм/мин наблюдается в основном γ -твердый раствор, имеющий дендритноячеистую структуру при R=10 мм/мин (см. рис.4, г) и дендритную при R=20 мм/мин (см. рис.4, д). Ликвация раствора выражена очень сильно. Объемная доля эвтектики (γ - γ) существенно уменьшается (V_1 - \approx 2%), а карбидные фазы практически отсутствуют. Такое состояние сплава облегчает процесс гомогенизации при последующем отжиге. При этом сплав из квазимонокристаллического состояния в большей степени приближается к монокристаллическому состоянию (рис.8), что приводит к улучшению его механических характеристик.

Рис.5 Морфология карбидов в монокристаллах сплава ЖС 32-ВИ

Термическая обработка наряду с рациональным легированием, металлургической обработкой жидкого металла и управлением кристаллизацией в процессе отливки деталей из жаропрочных литейных сплавов, - один из резервов улучшения их механических и физических характеристик. Исследуемые образцы термообрабатывали по режиму: гомогенизация при температуре 1255 °С в течение 2 ч с охлаждением на воздухе. Металлографическим исследованием термообработанных образцов, отлитых по различным вариантам, установлена их структурная

идентичность. В структуре всех образцов наблюдается повышение структурной однородности в результате выравнивания размеров γ -фазы в дендритных осях и межосных участках (рис.6). Кроме того, термообработка способствовала более полному выделению интерметаллидной γ -фазы из γ -твердого раствора.

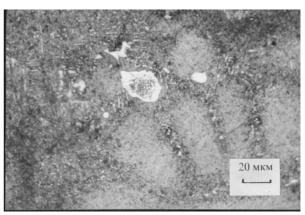


Рис.6 Микроструктура сплава ЖС 32-ВИ после гомогенизации при температуре 1255°C

Из результатов, приведенных на рис.7, видно, что наиболее высокие значения механических и жаропрочных свойств, превышающие требования технических условий и уровень серийного металла, получены на образцах, отлитых по 3-му варианту.

При этом также наблюдается достаточно высокая стабильность исследуемых характеристик. Тогда как для образцов, отлитых по 1- и 2-му вариантам, характерен невысокий уровень стабильности жаропрочных и механических свойств.

Механические свойства (предел прочности σ_B и относительное удлинение δ) монокристаллов сплава ЖС32-ВИ при комнатной температуре находились в пределах σ_B =990...1208 МПа и δ =6,0...20,4 %, что соответствует нормам ТУ 1-92-177-91.

Микротвердость матрицы во всех исследуемых образцах находится примерно на одном уровне ($HV=4868...5570~M\Pi a$) с незначительным снижением значений от верха к низу образца.

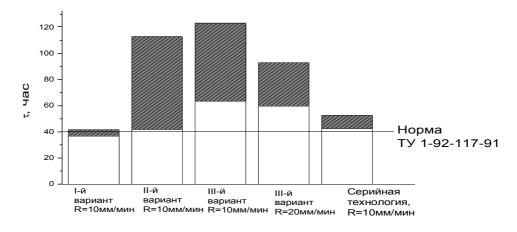


Рис.7. Длительная прочность монокристаллов сплава ЖС32-ВИ, изготовленных с различными вариантами кристаллизации, Тисп= 1000° С, σ =280МПа

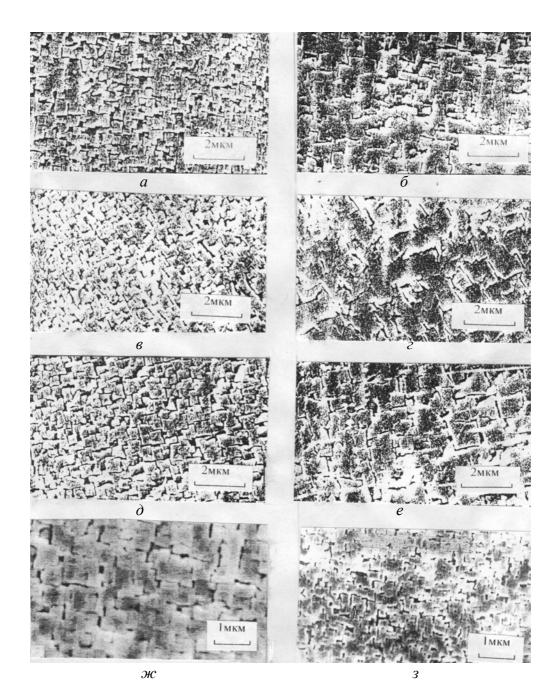


Рис.8. Микроструктура сплава ЖС32-ВИ в литом состоянии:

a — вариант 2, ось дендрита R=10мм/мин; б — вариант 2, междендритное пространство R=10мм/мин; в — вариант 3, ось дендрита R=10мм/мин; e — вариант 3, междендритное пространство R=10мм/мин; д — вариант 3, междендритное пространство R=20мм/мин; ж — серийная технология, ось дендрита R=10мм/мин; з — серийная технология, R=10мм/мин, после отжига R=1270°C

выводы

1. В процессе формирование микроструктуры при направленной кристаллизации никелевых сплавов НВ-=4 и ЖС32-ВИ определяющее влияние на морфологию фронта кристаллизации имеет градиент температуры. Значение интенсивности теплоотвода с фронта кристаллизации в формировании совершенной монокристаллической структуры более важ-

но для сложнолегированного сплава ЖС32-ВИ, чем для бинарного сплава НВ-4.

2. Методом высокоскоростной направленной кристаллизации в повышенном градиенте температуры удается получать монокристаллы никелевых сплавов НВ-4 и ЖС32-ВИ с высокой степенью структурного совершенства, однородностью фазового состава и высоким уровнем механических свойств.

3. Длительная жаропрочность монокристаллов сплава ЖС32-ВИ, полученных в условиях повышенного градиента в 1,5...2 раза, выше по сравнению с монокристаллами ЖС32-ВИ, изготовленными по серийной технологии в промышленных условиях.

ЛИТЕРАТУРА

- 1. Р.Е. Шалин, И.Л. Светлов, Е.Б. Качанов и др. Монокристаллы никелевых жаропрочных сплавов М.: «Машиностроение», 1997, 336 с.
- 2. Б.Е. Патон, Г.Б. Строганов, С.Т. Кишкин. и др. Жаропрочность литейных сплавов и защита их от окисления / Под ред. Б. Е. Патона. Киев: «Наукова думка», 1987, 256 с.
- 3. В.М. Ажажа, Г.П. Ковтун, А.Н. Ладыгин и др. Микроструктура и свойства монокристаллов ни-

- келевого сплава НВ-4. І. Влияние условий кристаллизации на структуру и свойства // Металлофизика и новейшие технологии. 2002, т.24, Neq 11, c.1525-1536.
- 4. М. Флемингс. *Процессы затвердевания*. М.: «Мир», 1977, 423 с.
- О.М. Барабаш, В.С. Войнаш. Стабильность плоского фронта кристаллизации сплавов системы Ni-W. І. В окрестности точки конгруэнтного плавления сплава Ni-15% ат.W // Металлофизика и новейшие технологии. 2000, т.22, №2, с.94-98.
- 6. *Кристаллизация из расплава* / Под ред. К. Хайна и Э. Бурига. М.: «Металлургия», 1987, 246 с.

РОЛЬ ТЕПЛОФІЗИЧНИХ УМОВ В ПРОЦЕСІ ФОРМУВАННЯ СТРУКТУРИ ПРИ СПРЯМОВАНІЙ КРИСТАЛІЗАЦІЇ ЖАРОМІЦНИХ СПЛАВІВ НА НІКЕЛЕВІЙ ОСНОВІ

В.М. Ажажа, В.Я. Свердлов, А.Н. Ладигін, Т.Ю. Рудичева, П.Д. Жеманюк*, Н.О. Лисенко*, В.В. Клочіхін*, О.О. Педаш*

Досліджено вплив теплофізичних умов в процесі формування структури при спрямованій кристалізації нікелевих сплавів НВ-4 та ЖС32-ВІ. Вивчено вплив температурного градієнту на фронті кристалізації, швидкості спрямованої кристалізації та інтенсивності тепловідведення на структуру та властивості монокристалів сплавів НВ-4 та ЖС32-ВІ. Досліджено структуру та механічні властивості складно легованого нікелевого сплаву ЖС32-ВІ, що містить у своєму складі реній та тантал. Визначений зв'язок умов кристалізації, гомогенізуючого відпалювання з тонкою структурою монокристалів та їхніми механічними властивостями. Показана перевага високоградієнтної спрямованої кристалізації в порівнянні з серійною промисловою технологією в отриманні монокристалів з високими експлуатаційними характеристиками.

ROLE OF THERMAL AND PHYSICAL CONDITIONS DURING SHAPING STRUCTURE AT A DIRECTIONAL CRYSTALLIZATION OF HEAT RESISTING ALLOYS ON NICKEL BASE

V.V. Azhazha, V.Ja. Sverdlov, A.N. Ladygin, T.Yu. Rudycheva, P.D. Zhemanjuk*, N.O.Lysenko*, V.V. Klochihin*, O.O. Pedash*

The influence thermal and physical conditions during shaping structure at a directional crystallization of nickel base alloys NV-4 and ZS32-VI. The influence of a temperature gradient rate at the front crystallizations, speed of a directional crystallization and intensity heat remove on structure and properties of single crystals alloys NV-4 and ZS32-VI is investigated. The structure and mechanical properties nickel base superalloy ZS32-VI, containing in the makeup rhenium and tantalum is explored. The linkage of requirements of a crystallization, homogenizing annealing with thin structure of single crystals and their mechanical properties is spotted. The advantage high temperature gradient of a directional crystallization is shown in comparison with serial industrial technology in reception of single crystals with the high operational characteristics.