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     Dispersion characteristics have been analyzed for field-aligned electron-cyclotron waves (named also as the 

right-hand polarized or extraordinary waves) in a two-dimensional cylindrical magnetic mirror-trapped plasma 

including the electrons with anisotropic temperature (pressure). It is shown that the instability of these waves is 

possible only in the range below the minimal electron-cyclotron frequency, that much smaller than the gyrotron 

frequency used for ECR power input into the plasma, under the condition when the perpendicular temperature of 

resonant electrons is larger than their parallel temperature.  

     PACS: 52.55.Jd, 52.50.Sw 

INTRODUCTION  
 

     The recent plasma heating experiments in Gas-

Dynamic Trap [1] by using high-frequency waves in the 

range of electron-cyclotron resonances (ECR) have 

demonstrated a tangible increase in electron 

temperature. Moreover, it was observed that such 

heating is accompanied by the development of low 

frequency instability. As an expected result, the ECR 

heating should lead to temperature anisotropy when the 

parallel temperature, hT|| , is smaller than the 

perpendicular temperature, hT , of resonant (hot) 

electrons. On the other hand, the presence of electrons 

with hh TT ||  can cause the electron-cyclotron wave 

(ECW) instability and consequently affect the transport 

processes. To study the heating and stability problems 

in two-dimensional (2D) plasma models we should use 

the corresponding kinetic dielectric tensor [2], 

accounting for the cyclotron and bounce resonances. In 

this paper, we analyze the dispersion relations for field-

aligned ECWs in a 2D cylindrical magnetic mirror-

trapped plasma including electrons with anisotropic 

temperature.  
 

1. PLASMA MODEL  
 

     Let us consider the simplest 2D collisionless mirror-

trapped plasma suitable for cylindrical axisymmetric 

gas-dynamic open traps, where the confinement 

magnetic field can be approximated, Fig. 1, as  
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Fig. 1. Two-dimensional straight mirror-trapped 

magnetic field configuration 
 

Нere 0L  is the half length of mirror trap along the z-

axis; mm RR /)1(  ; minmaxm HHR 00 /  is the mirror 

ratio; minH 0  is the minimal value of 0H  at the centre of 

the trap; maxH 0  is the maximum of 0H  at 0Lz  .  

     To simplify the calculations we assume that the 

radial magnetic field component is much smaller than 

the longitudinal one, which is valid for long mirror traps 

if mRLa /1/ 0  , where а is the plasma radius at the 

central part of the trap (z=0). Thus, the radius of plasma 

boundary along the mirror trap is described by the 

following the law: 2

0

2

0 /1)( Lzazr  . 

     The steady-state distribution function of resonant 

(hot, h) electrons in velocity space is modeled by the bi-

maxwellian distribution:  
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Here the variables v  (absolute value of velocity) and  

non-dimensional magnetic moment) have been used 

instead of 
||v  and 

v  as 
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Nh is the density of resonant h-electrons; 

ehhT mTv /2 ||||  , 
ehhT mTv /2    are their thermal 

velocities in the directions parallel and perpendicular 

relatively to H0, me is the mass of electrons. As far as 

the bulk (cold, c) electrons and plasma ions is concerned 

their distributions are the usual maxwellian with the low 

isotropic temperature, e.g., cсc TTT  || . 

     The main feature of a 2D mirror-trapped plasma is 

that the stationary magnetic field is axisymmetric and 

has one minimum at the centre of the trap. As a result, 

all the plasma particles should be separated in two 

groups of the so-called trapped and passing (untrapped) 

particles. In our case, such separation can be done by 

the non-dimensional parameters   or   1  

analyzing the conditions when the parallel velocity of 

plasma particles is equal to zero: 
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Here we distinguish by the index 1s  the particles 

with the positive and negative parallel velocities 

relatively to H0. The domain of the perturbed 

distribution functions for the trapped particles is given 

[2] by the inequalities: 

 0 ,        )()(  tt zzz  ,          (5)
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where  /0Lzt   are the stop points (or reflection 

points) of the trapped particles on the magnetic field 

line. As far as the untrapped particles is concerned, the 

corresponding domain of their distribution functions is 

defined as follows  

1 ,               
00 LzL  .   (6) 

     However, the influence of untrapped particles on the 

wave processes in the straight mirror-trapped plasmas is 

not substantial, since 1) they are lost in the one-half 

transit time, and 2) the number of passing particles is 

much smaller than the number of trapped particles if 

1mR . Further, we neglect the contribution of the 

untrapped particles to the current density components 

and, respectively, to the dielectric characteristics. 

2. DISPERSION RELATIONS FOR ECWs 

     To draw analogy with the linear theory of ECWs in 

1D straight magnetic field, let us assume that the n-th 

harmonic of the electric field gives the main 

contribution to the n-th harmonic of the current density 

[ )/exp(~),(),,( 0Linztiztzt  jE ]. In this case, for 

the field-aligned ECWs (when 0|| E , 0|| H ) from 

the Maxwell’s equations, we get the following 

dispersion equation [2]: 
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where  denotes the particle species (e.g. the cold 

с  and hot h  electrons). As usual, the 

contributions of protons and heavy ions to this equation 

are negligible. The contribution of trapped electrons to 

the transverse elements of the dielectric susceptibility 
nn,

,
 in 2D mirror-trapped plasma is defined by the 

summation of bounce-resonant terms including the 

double integration in velocity space, resonant 

denominators and the phase coefficients:  
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     When the denominator in nn,

,
 is equal to zero we 

get the conditions of the resonant interactions of ECWs 

with the trapped electrons in 2D straight mirror trap:  
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which involve the wave frequency, the bounce-averaged 

cyclotron frequency and the bounce frequency, where 

the integer p is the number of the possible bounce-

resonances. The trapped particles (both the cold and hot 

electrons) with the corresponding v  and   are named 

as resonant and responsible for the damping or growth 

rates of the wave amplitudes in the equilibrium and non-

equilibrium plasmas. Moving along the stationary 

magnetic field lines the trapped particles bounce-

oscillate between the stop points and are able to interact 

many times with the wave into the two cyclotron 

resonance zones, which are symmetric relatively to the 

plane 0z  in the space between the mirror-points. 

     Further, the dispersion equation should be solved 

numerically for the real and imaginary parts of the wave 

frequency, =ReiIm, to define the conditions for 

the ECW instabilities. As usual, the growth (damping) 

rate of ECWs, Im , is defined by the contribution of 

the resonant electrons to nn

h

,

,Im  , that can be readily 

derived from nn,

,
 using the well known residue (or 

Landau rule) method: 
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is the separate contribution of bounce-resonant terms to 
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so that the wave-particle resonance conditions for 

energetic h-electrons can be rewritten as 
hpu  , where 

hTvvu ||/ .         (14) 

     In the 1D straight magnetic field case, the transverse 

dielectric susceptibility tensor component for field-

aligned electron-cyclotron waves is 
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is the plasma dispersion function.   

     As a result, the dispersion equation for ECWs in a 

magnetized plasma confined in the straight uniform 

magnetic field has the well known form  
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where the parallel wave number ||k  is connected with 

the eigenmode numbers n as 0|| / Lnk  . In this case, 

the squared refractive index of ECWs in a magnetized 

plasma is defined by the expression 
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where eepe meN /4 22   is the squared Langmuir 

frequency of electrons calculated by the sum-density of 

the cold (Nc) and hot (Nh) electrons, i.e. Ne= Nc+Nh. 

Analyzing this expression we see that the propagation of 

ECWs is possible in the frequency range 0Re c .  

     Another important dispersion characteristic of ECWs 

is the imaginary part of their frequencies,  Im , 

characterizing either the temporal growth rate (if 0 ) 

or the damping rate (if 0 ). The increment 

(decrement) of the ECWs, D1 , under the condition 

 ReIm  , is defined by the expression 
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is the contribution of the hot electrons to the transverse 

susceptibility for the right-hand polarized ECWs. Using 

these expressions one can demonstrate that the ECW 

instability is possible if 0Im ,  h . As usual, this is 

possible if hh TT || . 
 

3. NUMERICAL RESULTS 
 

     Now, let us compare the growth rates of ECW 

instability in the plasmas confined in the 1D straight 

magnetic field, D1 , and in the 2D Gas-Dynamic Trap 

(GDT), D2 . In our simulations, according to [1],  

L0 = 350 cm, H0min = 0.35 T, Rm = 33 cm, a = 14 cm, 
13102 cN cm

3
, 13104.0 hN cm

3
. The parallel and 

transverse temperatures of the energetic (resonant) 

electrons are chosen to be equal to 10|| hT  keV and 

40hT keV, respectively, whereas the temperature of 

the cold particles is very small and isotropic.  

     The approximate magnetic field structure in the right 

half of Gas-Dynamic Trap plasma is shown in Fig. 2. 

The dashed line shows the magnetic field strength 

corresponding to the electron-cyclotron resonance at the 

gyrotron frequency 5.54f GHz. In this case, the 

electron-cyclotron resonance condition (ECR zone) is 

realized at zres = 322 cm. The ECR points, resz , are the 

stop (reflection, mirror) points for the resonant trapped 

electrons, interacting with the pumping ECW wave by 

means of the cyclotron and bounce resonances. 

 

 
 

Fig. 2. On-axis distribution of the magnetic field  

strength )(0 zH  in the GDT-like plasma 
 

     As a result, the possible longitudinal eigenmode 

numbers n of ECWs can be estimated by  
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The corresponding dependence n() is plotted in 

Fig. 3,a. The ECWs growth rate in the straight magnetic 

field, 1D, is shown in Fig. 3,b. For 2D GDT-like plasma 

the temporal growth rate can be estimated by (12) as 
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     The dependence of 02 / cD   versus )Re(   for 

ECW instabilityis presented in Fig. 3,c for the waves in 

GDT-like plasma. The computations of D2  are carried 

out in the range Hz104Hz102 1010   , whereas the 

minimal and maximal electron gyrofrequencies are 

equal to 10
0 1015.6 c Hz and 12

0 102  maxc Hz, 

angular gyrotron frequency is 111042.32  ff  Hz. 
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As it is shown in Fig. 3,b and Fig. 3,c, instability of 

ECWs is possible for both plasma models in the 

frequency range 0c  and is impossible if 

maxcc 00   .   

 

 
 

Fig. 3. The dispersion characteristics of ECWs  

versus  in a Gas-Dynamic Trap plasma 

     As one can see, the dependencies 1D and 2D on  

are similar (for the same bulk parameters). The ratio 

100...2/ 2D1D   versus  for the considered 

models is presented in Fig. 3,d. This dependence is 

nonlinear; the difference is very large (by factor 100) 

for the waves in the low frequency range Hz102~ 10  

and is smaller (by factor 2) at the high frequencies 

Hz104~ 10 . 

     The large difference between 1D and 2D is explained 

by the fact that the wave-particle interaction in the 1D 

straight magnetic field plasma is more effective one 

since the resonant particles move along the uniform 

magnetic field line with the constant parallel velocity 

and interact permanently (in time) with the wave. For 

2D mirror-trapped plasmas, since constv ||
 for trapped 

particles, there is another wave-particle resonance 

condition involving the particle energy, pitch angle, 

wave frequency, cyclotron and bounce resonances. As a 

result, the trapped electrons bouncing between the 

mirror points only part of the bounce-time can interact 

effectively with the wave at the ECR zones. 

CONCLUSIONS 

Let us summarized the main results. 

     It is shown that ECW instability in a mirror-trapped 

plasma is possible if hh TT ||  only in the range below 

the minimal electron-cyclotron frequency, that is much 

less than the pump-frequency (i.e. the gyrotron 

frequency used for ECR power input into the plasma).  

     The other feature of electron-cyclotron waves is the 

fact that their growth rates in 2D mirror-trapped plasmas 

are much smaller than ones in a 1D cylindrical plasma 

confined by uniform (straight) magnetic field. 
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ЭЛЕКТРОННО-ЦИКЛОТРОННЫЕ ВОЛНЫ В ЦИЛИНДРИЧЕСКОЙ ПРОБКОТРОННОЙ ПЛАЗМЕ 

С АНИЗОТРОПНОЙ ТЕМПЕPАТУРОЙ 

Н.И. Гришанов, Н.А. Азаренков
 

     Проанализированы дисперсионные характеристики электронно-циклотронных  (правополяризованных, 

необыкновенных) волн в двумерно-неоднородном аксиально-симметричном пробкотроне, содержащем 

электроны с анизотропной температурой (давлением). Показано, что неустойчивость этих волн возможна 

лишь в области частот ниже минимальной электронно-циклотронной частоты, то есть при частотах, много 

меньших гиротронной частоты электромагнитных волн, используемых для ЭЦР-нагрева плазмы, при 

условии, что поперечная температура резонансных электронов больше их продольной температуры.  

 

ЕЛЕКТРОННО-ЦИКЛОТРОННІ ХВИЛІ В ЦИЛІНДРИЧНІЙ ПРОБКОТРОННІЙ ПЛАЗМІ  

З АНІЗОТРОПНОЮ ТЕМПЕРАТУРОЮ 

М.І. Гришанов, М.О. Азарєнков
 

     Проаналізовано дисперсійні характеристики електронно-циклотронних (правополярізованих, 

незвичайних) хвиль у двовимірно-неоднорідному аксіально-симетричному пробкотроні, що містить 

електрони з анізотропною температурою (тиском). Доведено, що нестійкість цих хвиль є можливою лише в 

діапазоні частот нижче мінімальної електронно-циклотронної частоти, тобто при частотах, багато менших 

гіротронної частоти електромагнітних хвиль, що використовуються для ЕЦР-нагрівання плазми, за умови, 

що поперечна температура резонансних електронів є більшою за їхню поздовжню температуру. 


