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Dispersion characteristics have been analyzed for field-aligned electron-cyclotron waves (named also as the
right-hand polarized or extraordinary waves) in a two-dimensional cylindrical magnetic mirror-trapped plasma
including the electrons with anisotropic temperature (pressure). It is shown that the instability of these waves is
possible only in the range below the minimal electron-cyclotron frequency, that much smaller than the gyrotron
frequency used for ECR power input into the plasma, under the condition when the perpendicular temperature of

resonant electrons is larger than their parallel temperature.
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INTRODUCTION

The recent plasma heating experiments in Gas-
Dynamic Trap [1] by using high-frequency waves in the
range of electron-cyclotron resonances (ECR) have
demonstrated a tangible increase in electron
temperature. Moreover, it was observed that such
heating is accompanied by the development of low
frequency instability. As an expected result, the ECR
heating should lead to temperature anisotropy when the
parallel ~temperature, T, , is smaller than the

perpendicular temperature, T, , of resonant (hot)
electrons. On the other hand, the presence of electrons
with T, <T, can cause the electron-cyclotron wave

(ECW) instability and consequently affect the transport
processes. To study the heating and stability problems
in two-dimensional (2D) plasma models we should use
the corresponding Kinetic dielectric tensor [2],
accounting for the cyclotron and bounce resonances. In
this paper, we analyze the dispersion relations for field-
aligned ECWs in a 2D cylindrical magnetic mirror-
trapped plasma including electrons with anisotropic
temperature.

1. PLASMA MODEL

Let us consider the simplest 2D collisionless mirror-
trapped plasma suitable for cylindrical axisymmetric
gas-dynamic open traps, where the confinement
magnetic field can be approximated, Fig. 1, as
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Fig. 1. Two-dimensional straight mirror-trapped
magnetic field configuration
Here L, is the half length of mirror trap along the z-
axis; 0 =(R, -1 /R,; R, =Hgmx / Hopin 1S the mirror
ratio; H,.;, iS the minimal value of H, at the centre of
the trap; H is the maximum of H, at z==L,.
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To simplify the calculations we assume that the
radial magnetic field component is much smaller than
the longitudinal one, which is valid for long mirror traps

if a/L,<<1/R, ,where a is the plasma radius at the

central part of the trap (z=0). Thus, the radius of plasma
boundary along the mirror trap is described by the

following the law: ry(z) = ay1-&* /L5 .

The steady-state distribution function of resonant
(hot, h) electrons in velocity space is modeled by the bi-
maxwellian distribution:

Fu =—N expq— v? [1—;{1—-“&]} )
7t VT||hVTLh VTHh Tin

Here the variables v (absolute value of velocity) and p

(non-dimensional magnetic moment) have been used

instead of v, and v, as
v2 2% ).
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N, is the density of resonant h-electrons;

Vi = /2'|'"h/me , Vp, =4/2T,, /m, are their thermal

velocities in the directions parallel and perpendicular
relatively to Hy, me is the mass of electrons. As far as
the bulk (cold, c) electrons and plasma ions is concerned
their distributions are the usual maxwellian with the low
isotropic temperature, e.g., T, =T, =T..
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The main feature of a 2D mirror-trapped plasma is
that the stationary magnetic field is axisymmetric and
has one minimum at the centre of the trap. As a result,
all the plasma particles should be separated in two
groups of the so-called trapped and passing (untrapped)
particles. In our case, such separation can be done by

the non-dimensional parameters u or x=.1-u

analyzing the conditions when the parallel velocity of
plasma particles is equal to zero:

A A
v, (x,2) =sv [ ———2 =0. 4
” | -2 /12

Here we distinguish by the index s=+1 the particles
with the positive and negative parallel velocities
relatively to H, The domain of the perturbed
distribution functions for the trapped particles is given
[2] by the inequalities:

0<k<A5,

#:

-z, (k) <z2<2,(x), (5)
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where +z, =+l /+/5 are the stop points (or reflection

points) of the trapped particles on the magnetic field
line. As far as the untrapped particles is concerned, the
corresponding domain of their distribution functions is
defined as follows
V5 <k <1, Ly<z<L,. (6)
However, the influence of untrapped particles on the
wave processes in the straight mirror-trapped plasmas is
not substantial, since 1) they are lost in the one-half
transit time, and 2) the number of passing particles is
much smaller than the number of trapped particles if
R, >>1. Further, we neglect the contribution of the

untrapped particles to the current density components
and, respectively, to the dielectric characteristics.
2. DISPERSION RELATIONS FOR ECWs

To draw analogy with the linear theory of ECWSs in
1D straight magnetic field, let us assume that the n-th
harmonic of the electric field gives the main
contribution to the n-th harmonic of the current density
LE({, 2), jt, z) ~ exp(—iat +inz/L,)]. In this case, for

the field-aligned ECWs (when E, =0,H, =0) from

the Maxwell’s equations, we get the following
dispersion equation [2]:
2
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where « denotes the particle species (e.g. the cold
a=c and hot a=h electrons). As usual, the
contributions of protons and heavy ions to this equation
are negligible. The contribution of trapped electrons to
the transverse elements of the dielectric susceptibility

1% in 2D mirror-trapped plasma is defined by the
summation of bounce-resonant terms including the

double integration in wvelocity space, resonant
denominators and the phase coefficients:
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Here, 02, _ANe D @y, (k) = ”\/_VT"" the
m, 2L,E(x)

bounce-frequency of the trapped electrons with a

longitudinal ~ thermal  velocity v, =./2T, /m, ;
Q, _ EHomin is the minimal electron gyrofrequency;
m,C
rl2

K(x) =

 F
'[ 0 1-x?sin’p )= '[wll x?sin? (p
E(x) = ﬂfz\/l—/czsinz @de , E(4,x) :j,/l—xzsinz pdg

are the complete and non-complete elliptic integrals of
the first and second kind, respectively;
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When the denominator in 4" is equal to zero we

get the conditions of the resonant interactions of ECWs
with the trapped electrons in 2D straight mirror trap:
K@) __pas
© E(k) 2L,E(x)’
which involve the wave frequency, the bounce-averaged
cyclotron frequency and the bounce frequency, where
the integer p is the number of the possible bounce-
resonances. The trapped particles (both the cold and hot
electrons) with the corresponding v and x are named
as resonant and responsible for the damping or growth
rates of the wave amplitudes in the equilibrium and non-
equilibrium plasmas. Moving along the stationary
magnetic field lines the trapped particles bounce-
oscillate between the stop points and are able to interact
many times with the wave into the two cyclotron
resonance zones, which are symmetric relatively to the
plane z =0 in the space between the mirror-points.
Further, the dispersion equation should be solved
numerically for the real and imaginary parts of the wave
frequency, @ =Rew+i Imw, to define the conditions for
the ECW instabilities. As usual, the growth (damping)
rate of ECWSs, Ima, is defined by the contribution of

the resonant electrons to Im xp, that can be readily

p=0+1+2,..., (11)

derived from 477 using the well known residue (or

Landau rule) method: Im » 7' = Z Im z!" , » where
pur}
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is the separate contribution of bounce-resonant terms to
Im 7. Here
_ 0E(x) —Q,K(x)
' ouE(R)
so that the wave-particle resonance conditions for
energetic h-electrons can be rewritten as pu =g, , where

u=v/vy,. (14)

In the 1D straight magnetic field case, the transverse
dielectric susceptibility tensor component for field-
aligned electron-cyclotron waves is

2
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is the plasma dispersion function.
As a result, the dispersion equation for ECWs in a
magnetized plasma confined in the straight uniform
magnetic field has the well known form

=]

where the parallel wave number k; is connected with
the eigenmode numbers n as k, =nz/L,. In this case,

the squared refractive index of ECWSs in a magnetized
plasma is defined by the expression

2 2
k"C N Qpe
Rew

Qgp(Qep —Rew) ,
where Q2 =4aN.e*/m, is the squared Langmuir
frequency of electrons calculated by the sum-density of

the cold (N.) and hot (Ny) electrons, i.e. Ne= N¢+N;.
Analyzing this expression we see that the propagation of

ECWs is possible in the frequency range Rew < Q.

Another important dispersion characteristic of ECWs
is the imaginary part of their frequencies, y =Imw,

characterizing either the temporal growth rate (if y >0)
or the damping rate (if y»<0). The increment
(decrement) of the ECWSs, p,,, under the condition
Imw << Rew, is defined by the expression

(13)

where

dt (16)
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is the contribution of the hot electrons to the transverse
susceptibility for the right-hand polarized ECWSs. Using
these expressions one can demonstrate that the ECW
instability is possible if Imy,  <0. As usual, this is

possible if T, >T,, .

3. NUMERICAL RESULTS

Now, let us compare the growth rates of ECW
instability in the plasmas confined in the 1D straight
magnetic field, y,5, and in the 2D Gas-Dynamic Trap
(GDT), y,p. In our simulations, according to [1],
Lo=350cm, Hopin=035T, R,=33cm, a = 14 cm,
N, =2-10%cm™®, N, =0.4-10"cm™. The parallel and
transverse temperatures of the energetic (resonant)
electrons are chosen to be equal to T, =10 keV and
T,, =40keV, respectively, whereas the temperature of

the cold particles is very small and isotropic.

The approximate magnetic field structure in the right
half of Gas-Dynamic Trap plasma is shown in Fig. 2.
The dashed line shows the magnetic field strength
corresponding to the electron-cyclotron resonance at the
gyrotron frequency f =54.5GHz. In this case, the

electron-cyclotron resonance condition (ECR zone) is
realized at z,,s = 322 cm. The ECR points, +z , are the

stop (reflection, mirror) points for the resonant trapped
electrons, interacting with the pumping ECW wave by
means of the cyclotron and bounce resonances.
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Fig. 2. On-axis distribution of the magnetic field
strength H,(z) in the GDT-like plasma

As a result, the possible longitudinal eigenmode
numbers n of ECWs can be estimated by
~ L,Q,, Rew
ﬂc\/QCO (QCO - Rew)
The corresponding dependence n(w) is plotted in
Fig. 3,a. The ECWSs growth rate in the straight magnetic
field, yp, is shown in Fig. 3,b. For 2D GDT-like plasma
the temporal growth rate can be estimated by (12) as
2
Yo Reza) (Q, —Rew) Im 770 -
QCO Qpe (ZQCO - Rea]) ’
The dependence of y,p/Q Versus o(=Rew) for

ECW instability is presented in Fig. 3,c for the waves in
GDT-like plasma. The computations of y,y are carried

(21)

(22)

out in the range 2-10'°°Hz<®<4-10'°Hz, whereas the
minimal and maximal electron gyrofrequencies are

equal to Q. ~6.1510°Hz and Q.gpax ~2-10'? Hz,
angular gyrotron frequency is Qg =24 =3.42.10'*Hz.
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As it is shown in Fig. 3,b and Fig. 3,c, instability of
ECWs is possible for both plasma models in the

frequency range w<Q., and is impossible if
Qe <@ <Qeomax -
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Fig. 3. The dispersion characteristics of ECWs
versus win a Gas-Dynamic Trap plasma
As one can see, the dependencies yp and yp on @
are similar (for the same bulk parameters). The ratio
Vio! Vop ¢ 2...100 versus o for the considered

models is presented in Fig. 3,d. This dependence is
nonlinear; the difference is very large (by factor 100)

for the waves in the low frequency range o~ 2-10'°Hz
and is smaller (by factor 2) at the high frequencies

@~ 4-101%Hz.

The large difference between yp and yp is explained
by the fact that the wave-particle interaction in the 1D
straight magnetic field plasma is more effective one
since the resonant particles move along the uniform
magnetic field line with the constant parallel velocity
and interact permanently (in time) with the wave. For
2D mirror-trapped plasmas, since v, = const for trapped

particles, there is another wave-particle resonance
condition involving the particle energy, pitch angle,
wave frequency, cyclotron and bounce resonances. As a
result, the trapped electrons bouncing between the
mirror points only part of the bounce-time can interact
effectively with the wave at the ECR zones.

CONCLUSIONS

Let us summarized the main results.
It is shown that ECW instability in a mirror-trapped
plasma is possible if T, <T,, only in the range below

the minimal electron-cyclotron frequency, that is much
less than the pump-frequency (i.e. the gyrotron
frequency used for ECR power input into the plasma).

The other feature of electron-cyclotron waves is the
fact that their growth rates in 2D mirror-trapped plasmas
are much smaller than ones in a 1D cylindrical plasma
confined by uniform (straight) magnetic field.
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3JEKTPOHHO-IIUKJIOTPOHHBIE BOJIHBI B IIUJINHJIPUYECKOMN MPOBKOTPOHHOM IJIABME
C AHU3OTPOITHOM TEMIIEPATYPOM

H.HU. I'puwanos, H.A. A3apenxos

[IpoaHanM3MpPOBaHEl TUCHEPCHOHHBIC XapAKTEPHUCTUKU SIEKTPOHHO-IMKJIOTPOHHBIX  (TIPAaBOMOJNIAPU30BAHHBIX,
HEOOBIKHOBEHHBIX) BOJIH B JIByMEPHO-HEOJHOPOJHOM aKCHAJIbHO-CHMMETPUYHOM NPOOKOTPOHE, COJEprKalleM
3JIEKTPOHBI C aHM30TPOITHOH Temmeparypoil (naBnennem). [lokazaHo, 4TO HEYCTOIHUYMBOCTH 3THX BOJH BO3MOXKHA
JWIIb B 00JACTH YacTOT HMXXE MHUHUMAIBGHON 3JIEKTPOHHO-IIUKIOTPOHHON YacTOTHI, TO €CTh IPH YacTOTaX, MHOTO
MEHBIIUX THPOTPOHHOM 4YacTOTHI 3JIEKTPOMArHMTHBIX BOJIH, HMCHOJB3yeMbIX ans Ol[P-HarpeBa mnasmbl, mpu
YCIIOBHH, YTO IIOIIEPEUHAs TEMIIEPATypa PE30HAHCHBIX 3JIEKTPOHOB OOJIbIIE UX MPOAOJILHOI TeMIIepaTypHl.

EJEKTPOHHO-IIUKJIOTPOHHI XBUJII B IIAJITHJIPUYHINA TPOEKOTPOHHIN IJIA3ZMI
3 AHI3OTPOITHOIO TEMIIEPATYPOIO

M.I. I'puwmanos, M.O. A3apenkos

[IpoanamizoBaHo  gUCHEpCiHI ~ XapaKTEPUCTHUKH  EJIEKTPOHHO-IUKIOTPOHHHX  (IPaBOIOJISAPI30BAHUX,
HE3BUYAaHNX) XBWIb Yy JBOBHMIPHO-HEOJHOPITHOMY aKCiaJbHO-CHMETPUYHOMY HPOOKOTPOHI, IO MICTHTh
€JIEKTPOHH 3 aHI30TPOITHO TEMITEPATYPOIO (THCKOM). JIOBEEHO, 110 HECTIMKICTh IIMX XBUIIb € MOXKJIMBOIO JIMILE B
Jiara3oHi 4acToT HIDKYE MiHIMAIbHOI €JIeKTPOHHO-IIMKIOTPOHHOI 4acTOTH, TOOTO MPH yacToTax, O0araTro MEHIINX
TiPOTPOHHOI YaCTOTH €JIEKTPOMArHITHUX XBWJIb, IO BUKOPHCTOBYIOThCS /Uit EL[P-HarpiBanHs mia3Mu, 3a yMOBH,
1110 ITOTIepeyYHa TeMIlepaTypa pe30HaHCHHX EJIEKTPOHIB € OIIbIIOI0 32 TXHIO MO3T0BXHIO TEMIIEPATYpy.
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