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The finite difference time domain (FDTD) method is applied to describe the propagation of the transverse
electromagnetic waves through the magnetized plasmas. The numerical dispersion relation is obtained in a cold
plasma approximation. The accuracy of the numerical dispersion is calculated as a function of the frequency of the
launched wave and time step of the numerical grid. It is shown that the numerical method does not reproduce the
analytical results near the plasma resonances for any chosen value of time step if there is not a dissipation
mechanism in the system. It means that FDTD method cannot be applied straightforward to simulate the problems
where the plasma resonances play a key role (for example, the mode conversion problems). But the accuracy of the
numerical scheme can be improved by introducing some artificial damping of the plasma currents. Although part of
the wave power is lost in the system in this case but the numerical scheme describes the wave processes in an

agreement with analytical predictions.
PACS: 52.65.-y, 52.25.Xz

INTRODUCTION

The FDTD method [1,2] is widely used to simulate a
propagation of the electromagnetic waves through the
materials with various dielectric and magnetic
properties which may vary in time and space. In
classical case it solves the Maxwell’s equations in
partial differential form. Particularly it is frequently
applied in an antenna theory to design new antennas and
in a waveguide theory to optimize energy transfer.
Sometime the conductive properties of the materials
depend on the external electromagnetic impact. In this
case the Maxwell’s equations are supplemented by the
equations which describe an interaction of the material
media with the electromagnetic waves. For example, if
medium contains the free charges it will be the motion
equations for the free charges in the electromagnetic
field.

At present the FDTD method is used in plasma
physics mainly to solve the Maxwell’s equations
together with the plasma current equations for all
plasma species [3]. It does not allow to reproduce the
hot plasma effects which require solving the Kinetic
equation but gives a space- time distribution of the wave
electromagnetic field in cold plasma approach. This
approach can be used as a simplified approximation to
calculate wave power transmission, reflection and
damping (particularly for the problems of antenna-
plasma coupling). Also application of the FDTD method
in plasma physics can give some advantages to study a
wave-particle interaction including the nonlinear
processes but it requires a development of this method
for the anisotropic and nonuniform media.

It was shown [4, 5] that FDTD method can be used
to describe the fast wave propagation through the cold
magnetized plasmas including some phenomena of the
mode conversion. But description of the plasma
resonances which could appear along wave propagation
through a nonuniform plasma by the FDTD method is
under a question. The problem is that a wavelength
tends to zero near the plasma resonances. As a result a
fixed space step of the numerical grid does not allow to
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resolve correctly the small scale wave processes. Just
the mode conversion problem operates with plasma
resonances and cutoffs. Therefore the additional
analysis of the FDTD scheme accuracy in simulations of
the magnetized plasmas is required.

1. SET OF EQUATIONS AND
DISCRETIZATION SCHEME

The cold magnetized plasma is described by the set
of Maxwell’s equations coupled by the plasma current
equations for plasma species:
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here J describes an external current into plasma, v, is

the collisional frequency of the plasma species, wp,

and Q, are plasma and cyclotron frequencies

respectively.

A standard Yee cell algorithm [1] is applied to solve
the set of equations. It means that Faraday equation and
Ampere equation (Maxwell-Ampere equation without a
displacement current) are discretized in the way that
electric € and magnetic B fields are calculated at
different space points shifted from each other by a half
of the space numerical grid step. Moreover, the different
components of the fields are calculated at different
space points. It allows to present the curl numerically in
a convenient form (the sense of Yee cell application).
For convenient treatment of the boundary conditions a
discretization model has been chosen with the
components of electric field at the edges of the Yee cell
and the components of the magnetic field at the faces of
the Yee cell.
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In such a way the components of the electromagnetic
field will be calculated at following space points:
E (i+1/2,k, |) E,Gi.k+1/21), E,(ik,1+1/2),

1 1
B |k+ J+ B, (i+—=,k,1+=), etc.
( ) i+ K 1+2)

The time discretlzatlon is built also in the way that
the electric E and magnetic B fields are calculated at
different time moments shifted from each other by a
half of the time numerical grid step.

The current equation requires to know all
components of the current and the electric field at the
same space points. We have chosen the space points to
calculate the currents as a center of Yee cell. In such a
way all components of the current density will be
calculated at the same space points:

Jw(i+%,k+%,l+%), Jay(i+%,k+%,l+%), etc.

As a result the current data from the centers will be
averaged to the edges to calculate the electric field from
the Maxwell- Ampere equation. And the electric field
data from the edges will be averaged to the centers to
calculate the currents from third equation of the set (1).

The FDTD scheme has been built with E-J,
collocation in time. Then the Maxwell- Faraday
equation is explicit:
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The mixed explicit/implicit scheme has been chosen for
the Maxwell- Ampere and current equations:
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The set of the Maxwell’s equations with the current
equations (1) has been discretized for a harmonic signal:
all components of the vector values are proportional to
exp(j(keAX i +kyAy | +k,AZ-m—wAL 1)) - In our consideration
the Z axis is directed along the external magnetic field.
Direct calculations issue the discretized dispersion
relation:
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where bzw is the discretized wave
At/2
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frequency, dy = sin(kyAx/2) , d. = M
AX/2 y Ay 12
, E% are the components of the discretized

z
wave vector k and k?=d2+d2+d?, c is speed of
light.

The components of the discretized electromagnetic
tensor g can be presented in convenient form:
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where the coefficients ay = cos(kyAx/2),

a, =cos(k,Ay/2), a,=cos(k,Az/2) appear due to

averaging the electric field values from the edges to the
centers in the current equations and averaging the
current density values from the centers to the edges in

the Maxwell- Ampere equation, @p, =wp,-A is
“numerical” plasma frequency, Qaz =Q,-A s
“numerical” cyclotron frequency, 65b+jva-A and

A=cos(oAt/2) is a multiplier coming from a level of

the explicit/implicit presentation.

Let’s consider the transverse propagation of the
electromagnetic waves through the magnetized plasmas.
The transverse propagation means that k, =0.

Moreover, to resolve the shortest wavelengths of the
problem the steps of the space grid should be enough
small to provide dy~k,, dy~ky,, d;~k;,

a,~ay ~a, ~1 which mean g'~g =g . Finally the
general dispersion relation (4) is reduced to well known

analytical form [6] but, please, pay an attention to the

“numerical” definitions of the usual notatiOHS'
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which issues the ordinary k’=g— and the
c
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—ZM waves.
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2. ACCURACY OF THE NUMERICAL
DISPERSION FOR THE EXTRAORDINARY
WAVE

The numerical dispersion of the studied FDTD
scheme is compared with the analytical dispersion
according to the motivation in [7]. The accuracy of the
numerical scheme is defined as:
|Re(nZn) — Re(nAum)|

Re(mZ)

extraordinary k2=

(10)

n=

2

where ng, is square of the analytical refraction index

and n2,,, is square of the numerical refraction index (9)

for the extraordinary wave from.

The hydrogen homogeneous plasma with typical
fusion parameters has been chosen for the accuracy
tests. The densities of the electrons and ions are equal to
3-10" cm?, the external magnetic field value is 3.4 T.
The accuracy is built in Fig. 1. Although the requested
accuracy can be achieved in the wide frequency range
but it is not achievable near the lower hybrid frequency.
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This region is zoomed in Fig. 2. As a sequence the
FDTD scheme could issue a wrong result for the
waves with the frequencies which are close to the
lower hybrid one. And it is correct for any value of
time step regardless of the selected (enough small to
resolve the shortest wavelength) space step. Of course,
there is a condition of the numerical stability for the
studied scheme which provides the
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Fig. 1. The accuracy (10) of the numerical dispersion
for the extraordinary wave in the low frequency range
as a function of the normalized wave frequency and
the normalized time step. Please note that for the
convenience the large accuracy values are shown as 1
(absolutely wrong result)
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Fig. 2. The same as in Fig. 1 but with zoomed area
near the lower hybrid frequency. The red area reaches
the horizontal axis: numerical dispersion does not
reproduce the analytical result for any chosen time
step

acceptable relation between the space and time steps
of the numerical grid. This condition could be even
stronger than the condition on the numerical accuracy
but it was not strictly defined yet for the magnetized
plasmas. Also, although only the lower hybrid
resonance has been considered here but the similar
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conclusion can be made for other plasma resonances: the
nondissipative FDTD scheme cannot treat correctly the
wave processes near the plasma resonances.

But it does not mean that the FDTD scheme can not be
applied at all to simulate the processes near the plasma
resonances (particularly near the lower hybrid resonance).
A way to solve this problem is introducing some artificial
damping of the plasma currents. In our case the collisional
frequency of the plasma particles has been introduced to
the current equations. The changes in the numerical
accuracy can be seen from a comparison of the Fig. 2 and
Fig. 3. Although the accuracy near the lower hybrid
frequency depends still strongly on the time step value but
there are time step values which keep the numerical
accuracy in the selected limits.
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Fig. 3. The same as in Fig. 2 but with the artificial
damping provided by the collisional frequency which is
equal to 0.01 part of the wave frequency. The red area
does not reach the horizontal axis: numerical dispersion
reproduces the analytical result for some range of the
time step values with the acceptable accuracy

CONCLUSIONS

The numerical dispersion of the transverse
extraordinary wave for one of the widely used FDTD
scheme is compared with the analytical dispersion of this
wave in the low frequency range. The accuracy of the
numerical dispersion is calculated as function of the wave
frequency and the time step of numerical grid. It is shown
that numerical dispersion issues wrong result in the
frequency range near the lower hybrid frequency for any
value of time step even if the space step is enough small
for well resolution of the shortwavelength perturbations.
Intuitively this result follows from vacuum Courant
condition [2] of the numerical stability. But numerical
accuracy and numerical stability are important but
different characteristics of the FDTD numerical scheme.
In general one of them does not follow from another.
Moreover there is not a proof for Courant condition of the
magnetized plasma: many authors suppose and motivate
that vacuum condition is still valid for the magnetized
plasmas but the conclusion is based on statistical data
only. Here we have proved that the accuracy of scheme
without current dissipation is not enough to simulate
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waves near the plasma resonances regardless of the
numerical stability.

The accuracy of the FDTD scheme near the plasma
resonances can be improved by introducing some
artificial dissipation (for example, the artificial
damping through the collisions). In this case there is a
possibility to choose the time step value to reach the
selected numerical accuracy but the price of this
possibility is a nonconservative system. Amount of
power which is “lost” in the system due to this
artificial damping is the subject of separate discussion,
especially for the scenarios with the mode conversion
processes. So, the artificial collisions allow to treat the
plasma resonances by the FDTD method reproducing
the space- time distribution of the electromagnetic
field of the different plasma modes but the power
conservation low for these modes should be corrected
on the “lost” power.
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TOYHOCTHh METOJIA KOHEUYHBIX PA3SHOCTEM BO BPEMEHHOM OBJACTH
IPU MOJEJAPOBAHUU XOJIOAHON MATHUTOAKTUBHOM IJIA3MBI

HU.B. lIagnenxo, /I.A. Menwvnux, A.O. Illpokaesa, H.A. I'upka

MeTox KOHEUHBIX pasHOCTel BO BpeMmeHHOW obmactu (KPBO) npuMeHseTcs Uit OMHCAHUS PAcpOCTPAHCHHUSI
MOTIEPEYHBIX IEKTPOMArHUTHBIX BOJIH Yepe3 MarHUTOAKTHBHYIO IUIa3My. UMCICHHOE TUCIIEPCHOHHOE YpaBHEHHE
MOJIYYeHO B MPHUOIVKEHUU XOJIOAHON T1a3Mbl. TOYHOCTh YUCICHHON TUCTIEPCHH MOCUYNTaHA KaK (GyHKINS 4aCTOTHI
pacnpoCTpaHsIOMEHCs BOJTHBI M BEIMYHMHBI BPEMEHHOIO IIara 4YucleHHOH ceTku. Iloka3aHo, 9TO IpU OTCYTCTBHH
MEXaHU3MOB JIMCCHIMAIMN B CHUCTEME YHCICHHBI METOJ HE BOCIPOM3BOAWT AHAIUTHUECKHE DPE3YNbTaThl BO3JNE
TUIa3MEHHBIX PE30HAHCOB JUIsl JTFOOOTO BBIOPAHHOTO BpeMEHHOro Imara. Jto 3Hauyut, uto MeToq KPBO Hembss
HNPUMEHATHh NPSIMOJIUHENHO Ui MOJEIUPOBAHMS 3aad, B KOTOPBIX IIa3MEHHBIE PE30HAHCHI UTPAIOT KIIOYEBYIO
ponb (Hampumep, B 3aja4ax 10 M3Y4EHHIO KOHBepcHH MoJ). Ho TOYHOCTh YMCIICHHOW CXEMBI MOXKHO YIIyYIIHUThH
yepe3 BKIIOYEHHE MEXaHHM3Ma 3aTyXaHHs Ul MIa3MEHHBIX TOKOB. XOTS B 3TOM Cly4ae 4acTh DHEPTUU BOJIHBI
TepsAeTCsl B CHUCTEME, HO YHCIECHHAS CXEMa ONMHUCHIBAET BOJIHOBBIE IPOLECCHI B COOTBETCTBUU C aHAIUTHYECKUMHU
npeJcKa3aHUsMU.

TOYHICTb METO/Y KIHIEBUX PI3HUIIb Y YACOBI OBJIACTI IPU MOJEJIIOBAHHI
XO0JIOJHOI MATHITOAKTUBHOI IIJIABMU

L.B. Ilagnenko, /1.0. Menvnux, A.0. Ilpoxacsa, 1.0. Iipka

Meroj KiHLEBHX pi3HHLB y 4acoBii obmacti (KPUO) 3acTocoByeThes JJisi BUBYSHHS TOIIUPEHHS TTOTNIEPEYHNX
EJIEKTPOMArHiTHUX XBWJIb Ye€pe3 MarHiTOakTUBHY IUIa3My. UYucioBe [ucliepciiiHe pIBHSAHHS OTPUMaHO B
HaOJIDKEHHI XOJIOAHOT TuTa3Mu. TOYHICTh YHCIIOBOI AHcCIiepcii oOpaxoBaHa sSK (PYHKIIiS 9aCTOTH €IeKTPOMArHiTHOI
XBWJII Ta BEJIMYMHH YacOBOTO KPOKY 4MciIoBOi ciTku. [lokaszaHo, 10 3a BiJICYTHICTIO MeXaHIi3MiB aucumanii B
CHCTEMI YHCIIOBHH METO]| HE BIATBOPIOE aHAJITHYHI PE3yiabTaTH OuIs IUIa3MOBHX PE30HAHCIB ISl OyIb- SIKOTO
BUOpaHOTO 4YacoBoro Kpoky. Lle osnauae, mo Mmerogq KPUO He MOXHAa 3aCTOCOBYBAaTH MPSIMONIHIHHO JUIS
MOJICTIIOBAHHSI 3a]a4, Y SIKMX IUIa3MOBI PE30HAHCH BiAIrPalOTh KIOUOBY pOJib (HANpPHKIAJL,y 3ahadyax 3 BHBUCHHS
KOHBepcii Moa). AJle TOYHICTH YHCIIOBOI CXEMH MOKHA IMOKPALIMTH 4Yepe3 BKIIOYEHHS MEXaHi3My 3aracaHHs
IUTa3MOBHUX CTPyMiB. X0dYa B IbOMY BHIAJIKYy YaCTHHA €HEPril XBHUJ BTPAYa€ThCAd B CHCTEMi, aje YHCIOBA CXeMa
OTIHCY€ XBUJIBOBI IPOIIECH Y BiAMOBIIHOCTI 10 aHAITHYHUX NepeadadeHb.
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