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Synchrotron radiation of relativistic electrons moving in an inhomogeneous magnetic field at small pitch-angles
is considered. The trajectory of an ultrarelativistic electron is obtained taking into account a curvature and radial
inhomogeneity of magnetic field lines. The general formulae describing the radiation of an electron moving at pitch-
angles from 0 to 7n/2 are derived. The range of instantaneous characteristic frequencies appears instead a single
characteristic frequency. The applicability of the formulae for runaway electrons in the tokamak is evaluated. The

condition for using of the obtained formulae is derived.
PACS: 94.30.-d

1. INTRODUCTION

The synchrotron radiation is widely used in various
fields of science and engineering. However, the
formulae that take into account curvature of magnetic
force lines are only obtained recently.

The general formulae for synchrotron radiation of
ultrarelativistic charged particles moving along a spiral
trajectory in curved magnetic force lines were firstly
obtained in [1]. The radiation mechanism was called as
synchrocurvature to underline that the curvature of
magnetic force lines was taken into account. In [2], the
formulae were generalized to take into account drift in
an inhomogeneous magnetic field.

The radiation of relativistic electrons moving along a
curved spiral trajectory at small pitch-angles was
considered in [3,4]. The synchrotron radiation spectrum
of runaway electrons in tokamak was obtained in [3].
The spectral angular distribution, spectrum and
polarization characteristics have been derived in [4]. It
is shown in [6] that the same radiation spectrum has
been considered in [3] and in [4]. In limiting cases the
formulae [1-5] turn to the classical synchrotron and
curvature radiation.

The particle trajectory has been taken in drift
approximation in [1,2]. The equations of motion for
charged particles in circular magnetic force lines have
been solved in [4,5] to derive the particle trajectory
more exactly. It turned out that there was the regime of
motion when the pitch-angle and the curvature radius of
the trajectory is varying while the particle rotates around
magnetic line. Consequently, the instantancous
characteristic frequency in given direction is changed,
and we have the range of characteristic frequencies
instead of a single characteristic frequency.

At the same time, the model of circular magnetic
force lines has been used in [4,5]. Such a field does not
satisfy the Maxwell equations in vacuum. So necessary
to consider the general radiation mechanism for an
relativistic electron moving in an inhomogenecous
magnetic field, with the corrections caused by the
magnetic field gradient and the pitch-angle variability
taken into account. The curved magnetic field with non-
constant magnitude is considered in present paper. For
this case the electron motion can be analysed by using
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the more precise trajectory than the drift one. The
general trajectory will allow generalizing the former
radiation formulae and finding out the limits of their
applicability. In order to obtain a general expression for
the radiation spectrum Schwinger’s formula is used.
Using this formula the radiation spectrum of the
electron in the inhomogeneous magnetic field can be
obtained, once the curvature radius (or the acceleration)
of the particle trajectory is known.

The present paper is organized as follows. The
motion of  relativistic  electrons in  curved
inhomogeneous magnetic fields is considered in Section
2, using methods of the theory of nonlinear systems.
The trajectory position vector is expanded as a power
series in small parameter ¢ = 73 /R<< 1, where 7y is
the Larmor radius, R is the magnetic force line. The
radiation mechanism is described in Section 3. The
validity criterion of the obtained formulae is discussed
in Section 4. The solution of motion equations is
outlined in Appendix.

2. TRAJECTORY OF A CHARGED
PARTICLE

To find the trajectory of a charged particle the
guiding center approach is used in [1,2]. The pitch-angle
which defines as the angle between the particle velocity
vector and the magnetic field vector is constant in such
model. It is necessary to have more exact trajectory that
the phenomenon of changing pitch-angles can take into
account.

Let us assume that a magnetic field has lines of
force being curved with radius R , and the magnitude of
magnetic field is depends on the radial coordinate.
Suppose that Cartesian (x,y)-coordinates are in the
osculating plane of the magnetic field lines, and z-axis
coinciding with the axis of cylindrical magnetic surface.

If we introduce cylindrical coordinates (7 9.z ), the
magnetic field vector can be expressed as
R L .
B:= BOH—H(- sing i+ cos¢ J), (1)
0rfQ

where ¢ is the polar angle in (x,y)-plane, i, j are the
basis vectors of Cartesian frame. Here, in contrast to [1]
and [4,5], the radial dependence of the magnetic field is
included. (Also, the direction of the magnetic field
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differs from adopted in [4,5] by replacement B -~ -B )

The particle of charge €, mass 7, velocity V and
Lorentz-factor y = (1- v*/¢*) "2 >> 1
curved spiral trajectory in the magnetic field (1). The
angular velocity Q  corresponding this motion is
defined as Q@ = v/R where v is the velocity of the
guiding center along the magnetic line with curvature
radius R. The radius of Larmor’s circle 73 is much less
than R, € = ry/[R<< 1,

The equations of motion of the charged particle in
the magnetic field (1) are solved in Appendix. The
asymptotic expansion of the radial component of the
position vector r(r,§,z) of trajectory, in which the

moves along

terms proportional to (r,/R) << 1 are dropped, has the

form
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The expressions of 2z, ) and 0, are given in
Appendix. These terms make possible to calculate with
enough accuracy the absolute values of velocity and
acceleration, ¢ and z components can be found after
expression (2) is substituted into Eqs (A2). It’s worse to
mention that in (2) the assumption about small J is not
made yet.

The square of velocity is
Q'R
v2:Q2R2+ +w27"2
2 0°B
W B

3
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The magnitude of the acceleration is
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The corrections of the first order (on ¢ ) in
comparison with the first and second terms have been
remained in Equation (4).

It should be emphasized that Equation (4) differs
from the corresponding expression obtained in [2]. They
coincide only at small and large pitch-angles.
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2.1. THE ANGLE BETWEEN PARTICLE’S
VELOCITY AND MAGNETIC FIELD

It was shown in [5] that for an ultrarelativistic
electron moving in a circular magnetic field there is the
regime of motion, with varying pitch-angles. Let's show
that this property is also saved for the motion within the
magnetic field lines (1). The instantaneous characteristic
frequency in every given direction appears as
consequence of changing curvature of the particle
trajectory.

The components of the particle velocity have the
form

. 1 2
FI-W,rsing tEw@,r H—+ —(52Hsin , 5
asing ¢ £0yry 1o+ 20 Dsiny )

. 0 0

g = QROl- € cosy + EZH- 1. 6%+ H§+ l(52Hcos2¢ ED

i 4 g4 3 1 0

. Q'R 01 11 0
= +t W, 7, coslh +Ew —+0%- H—+ —(52Hcos

z W, 873 Y BFBHZ_ 12 3§ ZwH

It is visible from expression (5) that the transversal
velocity of guiding center is consisted of the centrifugal
drift velocity and the drift velocity caused by the
magnetic field gradient (underlined terms in (5)).

The velocity vector, which is transverse to the
magnetic field line, can be written as V; = re, t ze_ . Its
square is

4 p2
v = 2R + 20 *Rrycosy +w jry +

W,

+9222+252_ 2+ 52 CO
FBE D 3 D ° E

The angle between a velocity vector and magnetic
field, called also as a pitch-angle ¢ , is defined as
tga = [ v, |/|VH |

There are two limiting regimes of motion: i) the
value of transverse velocity is close to the speed of light
Wyrg » ¢, thus QR/Wyry =0/ <<1, and ii) the
transverse velocity is no relativistic, and the longitudinal
velocity goes to the speed of light QR - ¢, so
QR/wyry=0/e >>1 In case i), the ratio of Larmor

velocity to the wvelocity of centrifugal drift is
. Wy € - .
= TR0 Rlo, 5777 1, v,*w,r; and the pitch-

angle @ is constant. In case ii), all terms are essential in

upper line of Equation (6) ; this line can be written as
Q'R

v[2 = Y (1+ 2gcosy + q°). @)

B
As is seen from (7), the pitch-angle changes
periodically at §2 ~¢ (or ¢~1). The amplitude of
pitch-angle oscillations is tg0 00

From here follows, thatat § > ~¢ < § the magnitude
of pitch-angle is not saved. The curvature radius of the
trajectory is also changes from point to point that results
in appearance of a range of characteristic frequencies.

At the same time, as it follows from (5), the angle
0 p between the velocity vector and the direction of
drift trajectory saves constant value and is equal to



tg0 = Wy /v, = €/0 | Thus, the angle under which
the particle trajectory is wound onto the drift trajectory
has constant value. Possible, the angle ¢ p should be
used instead of a pitch-angle.

To calculate the acceleration components, Equations
(5) should be substituted into the right hand sides of
Equations (Al).

3. RADIATION SPECTRUM

The total energy radiated per unit time P = d /d¢
can be calculated from general expression [8]

d€  2e% a*- (ax v) /et 2é°
p=dt e @@V e e . ®)

where it have been taken into account that the
acceleration and velocity vectors are perpendicular.

The power averaged over time is of interest.
Substituting (4) in (8) and averaging over time, we
obtain

P_ziy

0R*+ 0 i1- 66 %)2) ©)
It can be seen that the total energy losses are consist of
two contributions such as the losses owing to
acceleration of the particle moving along a circular
force line, and the losses due to the acceleration at
Larmor rotation around a magnetic force line. For small
longitudinal velocities Q R << ¢ and even in the case of

relativistic longitudinal velocities for §2< ¢ < § (this
inequality is equivalent ¢ >> 1 ), Equation (9) has the
same form as the classical formula of power losses in a
homogeneous magnetic field [8]

2¢'B; 5,
3Imie yovi (10)

For ¢ << §? (or 4<<1)and v, -~ ¢, we obtain from

P=

(8) the formula of the curvature radiation power
2", c?
S (11)
Let's calculate the spectral distribution of the
radiation emitted by an electron in inhomogeneous
magnetic field. The total radiated power per unit
frequency emitted by a relativistic electron is given by
expression [9]
dP 2 ” 0

=-——(dtdrnl-
dw m _J;tTH

MURPAIU) r2) V() Ecosw T X
c

. 12)
, Sinw [r(z+1)-r@)]|/c
[r(2+1)-r(0)]
where r(f) and Vv(¢) are the position and velocity

vectors of the electron at time ¢, given by Equations (2)
and (5).
Using the Frenet formulas of the natural trihedral,

the next expressions can be obtained [6]

|r(t+r)-r(t)|:TEl_;_4k2U2E, (13)
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V(t ) ( ) D 1/y + k2U2
c’ 2 ’

1- (14)

kv =|al, (15)
where k is the curvature of the trajectory (2), and the
velocity is given by Equation (5). To obtain the
equations (13), (14) we have taken into account that the
acceleration is perpendicular to velocity, va= 0. Here,
contrary to the trajectories used in [1,2], the curvature of
trajectory (2) depends on time & = k(Z) .

Using (13), (14), the radiation spectrum can be
represented in the form

2
dP(r) . €U Eldrﬁ r VWUzHX
v mytug

0

2 (16)
el el Bl T
LA P yk J—1+—ykv sin207 7,
12 . 2 i
In comparison with [2, 6], equation (16) contains the
refined expressions of the trajectory curvature and
particle velocity.
Introducing a new variable x=Tykv/2  using the
formula from [9]

I(1+ 2x’ )sm y(x+ & I, 1

2 B
where Kj,;(x) denotes the MacDonald function of order
5/3, Equation (16) can be expressed as

ar@r) 3¢ ¢

I dxK ;5 (x),

= K
T o yky'[ s3(x)dx (17)
220
where Y 3k (Another method for a

representation of the radiation spectrum through the
Bessel function of the zeroth order J,(x) and its
derivative J,(x) has been developed in [3].) As V= ¢,
the radiation spectrum is entirely determined by the
instant curvature of trajectory or, according (15), its
acceleration at the given moment. After substituting
Equation (4) in (17), we can transform Equation (17) in
the form

N

dpP(1) _ e’y (Q R*+wirs + 20 "Rw }ry cosl ) EW_
dw 2mv? ¢
(18)

where F(y) = yJ’y K, (x)dx .

The characteristic radiation frequency is

_3y° 2
W Q'R +uw;
T (
For g=¢16°
synchrotron

3eBsina
= —y2 , Where @

2420 "Ro 2ry cosy | (19)

>> 1, from Equation (19) we have the

characteristic frequency

W is the pitch-angle [9].

synch ~ 2me

This characteristic frequency is maintained both in the
case of nonrelativistic 0 << ¢ and relativistic 0 >> ¢
longitudinal velocities if the inequality ¢>>1 is
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fulfilled. In this case, from Equation (19) we obtain the
spectral distribution of the synchrotron radiation [9]. For

g=¢l0"<<1, we obtain the characteristic frequency

curv

y3% and the spectral distribution of the

N | W

curvature radiation. In the limiting cases, the
characteristic radiation frequency is constant.

As it follows from Equation (19), for ¢ ~! the
characteristic frequency is dependent on time. The band
of characteristic frequencies arises instead the single
characteristic frequency,

3 ,c¢ 3 ;¢
=y —=|1-gl<w,.< =y —(0+ q). 20
5! RI ANR ! R( q) (20)

It is interesting to have an averaged spectral power.
For this purpose, it is necessary to average Equation
(17) over the time period 27 /@ ; however, neglecting
the corrections ~ ¢ ? to the effective frequency @ , it is

possible to put @ = @y . Equation (17) is transformed to

ar@y et dw. ) ©
doﬁ)z — (B)ykyIKS,S(x)dx,

0 Y

€2y

where y= 0 /0. .

The equation (21) has the same form as obtained in
[5], but here the improved expression for the
acceleration of the electron enters.

To integrate with respect to |®, |f in (21), we

introduce the variable z=1+¢”+ 2gcosw,t and
change the order of integration. Then [6]

T B e

W T Yesq), (22)

943

SO = — ¢ deK5/3(x)+
T )

yc

[1-qf

o i o o |

e
[1-4| T
+ — [ dxKg,;(x)H—+ arcsin
5/3
n 2
Je
Itg

0
1+ g% -yl /x* [
- - D7
2(] 0
g
2 €
where P, = 3/ ‘B’ is the total power emitted by a
c

charged particle moving with velocity V
circular ~ orbit  of Ve W0/,
@, = (3/2)%0p,/p .

Integrating in (22) with respect to frequency, we

along a

radius R,

obtain the total emitted power

2
2e bn2n 2 2
- Q1+ .
32! B ( q )
It is visible that Eq. (23) coincides with Eq. (9).
4. DISCUSSION
As it follows from the preceding consideration, the

general formula of synchrotron radiation (22) should be
used, when the velocity of a centrifugal drift is

comparable to the velocity of Larmor gyration or ¢ ~1.
Let's compare the obtained formulae for the total
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P= (23)

energy losses and radiation spectrum with the
expressions from other papers. The expression for total
power losses (9) coincides (to within small parameters)
with obtained in [4,5] and differs from the relevant
formula in [1,2]. The main difference arises in the field
of parameters, in which the pitch-angle is variable. In
this case, the velocity of centrifugal drift is comparable
to the velocity of Larmor rotation ¢ ~1.

In Fig.1 we present the comparison of the behavior
of the total energy losses as a function of the ratio
vy /v = Wgrg /QR | obtained from equation (9), with
the synchrotron and the curvature radiation mechanism.
The magnitude of magnetic field, the curvature radius,
and the energy of runaway electrons have been taken as
in the tokamak TEXTOR [3]. From this figure we can

notice that for pitch-angles ¢ < 10" the using of

classical synchrotron radiation mechanism is not
. . _ Wy Ry
sufficient. Thus, if the parameter ¢ = —~1, then

V, vV

I I
for description of the radiation of ultrarelativistic
electrons moving in inhomogeneous magnetic field we
must take into account the curvature of magnetic lines.

\A /VH
Fig. 1. Comparison of the total energy losses described
by Equation (9)(solid curve) with the energy losses of

the synchrotron radiation (dotted curve) and curvature

radiation (dashed curve) for B = 2010* G, V =50,

R=175 cm

The spectral distribution of the radiation is given by
Equation (22). In Fig.2, the spectral distribution of the
total radiation intensity dP/dw for an ultrarelativistic
electron moving in a curved magnetic field is
represented as a function of the frequency @ , for the
synchrotron radiation with effective Larmor radius and
for the synchrocurvature radiation of [2]. The solid
curve is described by Equation (22), the dashed curve
corresponds to [2, eq. (23)]. The difference between
these curves is due to that in [2] the trajectory of particle
has constant radius of curvature * R(1* ¢), whereas the

curvature radius of trajectory (5) changes from R|[1- ¢|

up to R(1* q), and the spectrum (22) is obtained by

averaging the contributions in radiation from different
points of the trajectory. The dotted curve represents the
spectrum of the classical synchrotron radiation of a
relativistic electron in a circle trajectory with radius

RyJ1+ ¢° . Such synchrotron radiation has also the total



radiation power (9). The values B ~ 10, y 0100 and

q = 1.2 have been taken.

dP/dw

100 100 10" 10 10
0l e

Fig.2. The spectrum of the radiation emitted by a
relativistic electron moving in a curved inhomogeneous
magnetic field (solid curve, Eq.(22)), of the
synchrocurvature mechanism [2] (dashed curve) and of
the effective synchrotron radiation (dotted curve)

Thus, the trajectory of an ultrarelativistic electron in
a curved inhomogeneous magnetic field is obtained. The
total power and the spectral distribution of the radiation
emitted by the relativistic charged particle in the curved
magnetic field have been derived, using this trajectory.
The obtained formulae in the lowest order of smallness
coincide with the formulae obtained earlier in [4,5] for a
circular magnetic force line. It is natural, as the
synchrotron radiation in the given direction goes from a
small segment of the trajectory, which with sufficient
accuracy can be approximated by an incircle. The
account of a radial inhomogeneity of the magnetic field
has allowed to find limits of applicability of
synchrocurvature radiation mechanism.

The criterion of necessity to take into account the
curvature of magnetic lines is found out. The application
of this criterion for the tokamak TEXTOR shows that it

is easily fulfilled.
Thus, the curvature of a magnetic force line needs to
be taken into  account, when = parameter

q=0ln / Q ’R ~1. These conditions are easily realized

both in the cosmic space and in the experimental
machines.

5. APPENDIX

The equations of particle motion in magnetic field
(1) have the form

Ferbeo Re wgeaifz0 zm0, 20 qan

eB
where @, = y_oc is the cyclotron frequency.
m

The system of Equations (A1) has two integrals
which correspond to a generalized angular momentum

and generalized momentum along z,
”2¢.:M,é'wBRln§%§:Vz, (A2)

where M and V', are the constants of integration.
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Substituting (A2) into (Al), assigning A= Q R?,
introducing new variable 7 = R(l te€ x) )
and expanding the obtained expression into powers of

= 1y /R << 1, we obtain the equation

X+twlix= EHE+ ZJZHxZ - £2H£+ EézHﬁ
02 0 06 0
+ 53H2+ QJZHX“ - 54Hg+ @52&65
012 6 [ 0 30 O
where W = wl+2Q7%,0 =Q/w, It should be pointed
out that the differs
corresponding frequency in [4] by the factor at ( 2.
This difference is caused by the radial inhomogeneity of
the magnetic field (1). The equation (A3) can be solved
by the method offered in [6]. Assume that the solution
of Equation (A3) has the form
x=z@U ),y =wetd (A4)
After substituting (A4) into Equation (A3) and
expanding the solution in a power series

Zzignzn(w)’a)_zzzgnanﬂ
n=0 n=0

Equation (A3) can be written as a system of equations
with unknown functions 2, ) [6]; solving this system
(with initial conditions 7(0)= r,7(0)= 0, ¢ (0)= 1/2
z(0)=0, M,V,= const), we find out the above

mentioned expressions (2), (5).
2

(A3)

frequency @, from the

Where V, = v, = is the velocity of centrifugal

drift
3 .1

sz L 250 Dy
064 24 12 9 0
£+ﬂ(52+7_1
0288 144 72

_H£+@Jz+£5“

59
64-—55Hcos
54 [ A

1
+—4° Hcos
54 [ Y

9576 720 72
" LTy D650, 1124, 1264 0 53600
320 21 63 21 189 [
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spiral trajectory / Problems of Atomic Science and

CUHXPOTPOHHOE U3JIYYEHUE PEJIATUBUCTCKUX JIEKTPOHOB, IBUKYIIUXCA IO/
MAJIBIMHU IMATY-YI'JIAMHU B HEOJHOPOAHOM MATHUTHOM I10JIE

AM. Cobones

PaccMOTpeHO CHHXPOTPOHHOE H3NIyYCHHE DENSTHBUCTCKHUX OJIEKTPOHOB, IBIDKYIIMXCS MOJA MAJBIMU IIMTY-
yIJiaMmu B HEOJAHOPOJAHOM MAarHUTHOM mojie. TpaeKkTopHs yJbTpapelsTUBUCTCKOrO DJIEKTPOHA MOJyYeHa C Y4eTOM
KPUBU3HBI U pa[[HaJ'IBHOﬁ HEOJHOPOAHOCTHU JIMHUM MarHUTHOTO TIOJIS. BI)IBCI[CHBI 061111/1e (bOpMyJ'II)I, OIIMCBIBAKOIIINEC
W3Ty4YeHHE DJICKTPOHA, ABMKYIIErocs mpu murd-yriaax or 0 go m/2. BMecto oTnenbHON XapaKTepHOW YacTOTHI
BO3HUKAET 00JIACTh XapaKTePUCTHUECKUX JacToT. OLeHeHa IPUMEHUMOCTD (OPMYIT TSI yOETAroINX 3JICKTPOHOB B
TOKaMake. BrIBeIeHbI yCIIOBUS JUIsl HCIIOIb30BaHMUS MTOTYYSHHBIX (OPMYIL.

CIHXPOTPOHHE BUITPOMIHIOBAHHS PEJIATUBICTCBKUX EJIEKTPOHIB, IO
PYXAIOTBHCA I MAJIMMHU ITIITY-KYTAMHU Y HEOJJHOPITHOMY MATHITHOMY I1OJII

AM. Coobonee

Po3risiHyTe CHHXPOTPOHHE BUIIPOMIHIOBaHHS PEJISTUBICTCHKUX ENEKTPOHIB, IO PYXalOThCS MijJ MAUMU MIiTY-
KyTaMH Y HEOJHOPIAHOMY MarHiTHOMy moiii. TpaekTopis yIbTpapelsTHBICTCHKOIO eJEeKTpPOHAa OTpHMaHa 3
ypaxyBaHHSIM KPHUBH3HHU 1 paAialibHOI HEOTHOPIIHOCTI JiHIH MarHiTHOro mois. BuBexeHi 3arambHi GopMymH, sKi
OMCYIOTH BUNIPOMIHIOBaHHS €JIEKTPOHA, 1[0 PYXA€THCS MPH MiTY-KyTax Bixg 0 10 /2. 3aMicTh OKpeMoi XapaKTepHOi
YaCTOTH BHHHKA€e 00JIaCTh XapaKTEPUCTHYHHUX 4dacToT. [IpoBeneHa omiHKa 3acTOCOBHOCTI OpMYI Ul 30iraroumx
eJICKTPOHIB y TOKamalli. BuBeneHi yMoOBH JUIs 3aCTOCYBaHHS OTPUMAaHUX (GopMyII.
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