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It is shown, that the modes of unstable spectrum of instability near threshold are able to form long-living spatial
fine structure and anomalous interference splashes, induced by the pump.
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1. INTRODUCTION

In this paper the three basic characteristics of the in-
stability near threshold supported by external source in
absorbing medium with cubic nonlinearity are dis-
cussed.

1. First of all, most if not all of types of interaction
between modes (except a few types) of the perturbation
spectrum is negligible [1-2]. An integral action on the
pump by the perturbation spectrum is substantial to a
great extent. Therefore a linear stage of the instability
transforms to the so-called quasilinear stage. At that
stage of instability process the integrated intensity of
perturbation spectrum independently of its width. That
intensity reaches (but not exceeds) some threshold level.
From this moment the rate of change of their amplitudes
(but not phases) becomes abruptly slower [3]. Decelera-
tion is a result of depumping. The depumping occurs
due to an integral action of the perturbation spectrum on
pump. Hence the life time of the instability process is
hundred or thousand times greater then a value of the in-
verse increment of linear theory. Under existing condi-
tions the phases of perturbation spectrum modes locked
by pump are able to form forced interference splashes,
induced by pump. Incidentally, the noise level reduction
[4] leads to a subsidiary deceleration of quasilinear
stage of the instability in media with and without wave
motion [3,5].

The behavior of the separate mode of spectrum
a(k,) near the instability threshold can be de-

scribed by the reductive equation

da,ldt= [y, (k,)-010a,- 2y ,la,[a, (1)

and at the same timef ;(k,) <V ;¢ . The quasilinear

a, -

stage of instability starts with the achievement of the
threshold intensity independently of the spectrum width:

(22 meo | ‘Z)THR = DO Y ppax - 901, )
Where Jy, =, (k,)-0 - 22 Ja, [ is a nonlinear

increment, D is a level of an imperfection, which is a
small parameter as well. At the quasilinear stage strong
inequality |V, <<V, - 0 determines anomalous retar-
dation of the instability process.

2. In the second place a slow change of the ampli-
tudes of the unstable modes coupled up relatively fast
behavior of the phases. The phase motion is able to
form the interference splash or fine structure of the per-
turbation, induced by pump. This effect of the induced
interference at the quasilinear stage of instability ap-
pears from the forced-phase locking by pump. Average
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amplitude of N-modes of the perturbation spectrum is
Z U a, VD /N and the wave amplitude in the area of
the interference splash is able to reach a value
ayvDIUN . In case of D<< 1 and N>>1 the amplitude

of the modulated wave in the area of the interference
splash is a few times greater than such amplitude in am-
bient space [6,7].

3. Thirdly, on the quasilinear stage of instability the
pumping intensity is slowly decreasing. The peripheral
parts of the perturbation spectrum are putting down.
Though some modes of the central parts of that spec-
trum keep slowly growing. Finally that process results
in abnormal bandwidth narrowing of the instability and
formation of the line spectrum of the mature structures
[1,2].

In most cases near threshold of instability the quasi-
linear operation is realized and coupled with effect of
induced interference. This mechanism is responsible for
formation of the fine structure of the laser pulses and for
formation of amplitude splashes as a result of the modu-
lation instability of the finite amplitude wave [6,7]. Ef-
fect of induced interference will becomes apparent
when development delay of instabilities takes a place. It
is possible only near threshold of instabilities.

2. STRUCTURAL TRANSITION
IN CONVECTIVE INSTABILITY

Let us discuss the process of convective selection in
the framework of the weakly nonlinear theory. To keep
the computations simple, we shall work with the
Proctor-Sivashinsky model [8,9] supplemented by
external forcing

0 =% - (1-0%)%0 +§D(D¢|¢ |2)+52f, 3)

where the Rayleigh number Ra is close to the critical
value Ra. corresponding to the onset of convective flow
Ra=Ra (1+¢).

This equation describes the two-dimensional
temperature field ¢ in the horizontal plane (x,)
generated by the thermal convection in a layer of
Boussinesq fluid between poorly conducting horizontal
planes. For ¢ << 1, the solution of the unforced equation
(1) is given by the mode combination

o = Ez a; exp(ik ;r) (4)

with |k; F 1. The amplitude equations governing the
slow evolution of the amplitudes a; (on the temporal
scale extended by the factor ¢ ) have the form [10].
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Fig.1. Convective structures corresponding to the
quasi-stable rolls (a) and stable cells (b)

Coupling factors have the form
=1, v, =2y 2k [ B 231 20050 0

where 0 is the angle between the vectors &, and ;.

As a rule, in the beginning the simplest structure —
convective rolls will appear in the system (Fig.1,a). In
this case the amplitude of the mode a; considerably
exceeds the amplitudes of other modes.

The state with N =1 does not appear generally. In
real systems at first the short-lifetime structure is
formed — imperfect rolls, which are weakly modulated
in direction of their orientation. This structure connects
the mode @, = a(@ = 0) with comparatively large
amplitude and the narrow spectrum of modes with small
intensity, which is located close to 0 = /2. Determine
the intensity of this spectrum as

A=

where the central mode a,=a® =1m/2) is excluded
from the sum. It may be shown that the narrowing of the
spectrum in a vicinity of © = /2 occurs.

The set of equations approximating the above-
described behavior of the system (when one of the
modes (a;) turned out to be sufficiently large) may be
written in the form

: 0 2, 20

al = 2a IZHI-aIZ-—aZ-EAH, (8)
. 2,

a; = 2a H ZAE )
A=2Agl—% 2—2a22-2A§_ (10)

Let us assume that the central mode of the spectrum
a, = a(® = 1/2) is insignificant and consider that the

growth of the primary mode @4 = a(® = 0) is slowing
down. Than we obtain 4 - 3/14 a . 6/7. Subse-
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Fig.2. a) Dynamics of the system, calculated by
Eqs. (9)-(10); b) the direct solution of Eq. (3)

=N =50, the

spontaneous external noise

with initial conditions , , where imx

quently the behavior of the spectrum A and the central
mode a> may be described by the equations

pevh Byl

11

N . (11

X'=x(1- x-v), (12)

where Y = 144/3 X =542/3, X' =dX/du, 1= 15¢,

besides determine Z = 5a; /3,
following expression:

which fulfills the

Z-= %- %X- % (13)

The intensity of the structure I= Z jajz may be
written in the form

- _[X+ Z+57/4 . (14)

Note that each state has it's own value of the
structure intensity. The perfect structures — convective
rolls and cells (i.e. perpendicular oriented rolls), have
the intensity equal to 1 and 6/5 respectively. The
intermediate state with short lifetime — the imperfect
rolls, has the structure intensity 15/14. Fig.2,a shows the
evolution of the system, governed by Eqgs. (8)-(10). It is
easy to see the formation of the intermediate state — the

imperfect convective rolls with structural intensity
I=15/14 (Y(0)=1.27),



Eventually this intermediate state is broken and the
perfect structure — regular cells is formed (Fig.1,b).
Direct solution of Eq.(3) with initial conditions
a(t=0=02, a,(=0)=0.05 (taking into
consideration spontaneous external noise | fo. |5 0.3)

are shown in Fig.2,b, where the curves 1, 2, 3
correspond to the functions, defined after Egs. (8)-(10).
There is correspondence of the solution of the general
Egs. (3) and the solution of the modeling Egs. (8)-(10).
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Fig.3. Model of the mode competition in convection

Thus, the primary instability causes the short-
lifetime structure — the imperfect convective rolls. When
the main mode amplitude a; is close to the critical value

a,,, = 4/6/7 and the spectrum intensity 4 becomes less

than the threshold value 4, =3/14, the secondary
instability arises and the central mode of the spectrum a,
begins grow. The perfect structure — regular cells,
appears as a result of this secondary instability. In that
case the nonlinearity forms development delay of
instabilities and the spectrum with trapped modes. A
mode competition (Fig.3) results the slow changed two-
dimensional spatial fine structure of the convection with
great life time.

In the presence of an external noise or due to other
reasons, which support the fluctuation in the system the
structural rearrangement may take place. The noise level
reduction leads to a subsidiary deceleration of the
instability.

3. MODULATION INSTABILITY OF THE FI-
NITE AMPLITUDE WAVE NEAR
THRESHOLD

Let us assume that Lighhill equation [10] is correctly

for slowly variable complex amplitude of the wave per-
turbation and it describes a nonlinear wave propagation

2
04 024 as)

7 -0A- o iA|A]* + g
where  is a decrement of oscillation damping, g is an
external source, which supports the finite amplitude
monochromatic wave A4 with the wavenumber & = X .
The variables £, X are the normalized time and coordi-
nate, correspondingly. Let a main mode be
uy expiif o - ikyx}, wheretty = 4; .9 = ¢, is an am-
plitude and a phase of the wave. The main mode is a
pump wave for the spectrum of the instable modes. The
spectrum of oscillation u, exp{i¢ , - ik, x} is excited as
a result of instability. This oscillation is connected with
the main mode by the spatial synchronism conditions
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2kO = kn * k-n 5

0< K, = K., << ko).
Let us note that the wave numbers of the instable

modes are symmetrically distributed relatively to a

wave number of the main mode. The amplitude of the

main mode in these conditions is determined from the

equation

where kt n - kOi Kn 5 (

N

uy = 1/{1+ %;Oumzsmd) m}. (16)
The summation here and below is carried out only
with the positive indexes m,n=12,..N  and

®,=2$,-9,-9_,is a phase of n-th channel of instabil-

ity. Here ® ois not in existence and ¢ , = @

-n»s
u, = u_,[1]. Let us assume for simplicity 0 = g. The

requirement of closeness to threshold of instability leads

to the small parameter
N

.2 2
D=—=) u,, (17)
Uy o

which at the same time define an imperfection D of the
growing spatial structure [3]. The initial value of the
phase of the main wave (n = 0) equals to zero. This
phase is described by following equation

dpy 22 Y 2 i 2

7- thky" - ug 4mZOum 2’;014,” Cos? ,, (18)

A change of the amplitudes of the growing modes is

defined by equations

du 2 s
= u,{-0 + u;Sind ,} . 19
2 u,{ uySin 1 (19)

It is obvious, that reversal of the sign of n doesn’t
change the equations. The phases of the modes depend
on sign of n.

a, _ k- 2(ul + ZZN u’ - luz)- u;Cos® , (20)
dt n 0 £, m 2 n 0 n

For calculation it is necessary to know, how the n-th

channel phase of instability is changing.

do 2 2
= + 2(uy —u;)t
dt n ( 0 n)
N , (2D
2(ugCos® ,, - ZZ um2C0s6D m)
m>0
where A, = 2k§ - k,% - k_zn. It is easy to see, that

A, =-2K,7.
First of all let us note that for realization of the insta-
bility it is necessary at least that the phase of each n-th

channel of instability @ , fast possesses the defined
value® *, . The phase of n-th channel of instability
practically doesn’t change and exponential growth of
amplitude 2, is beginning. Linear increment of insta-
bility is equal to

Imw = -6 + (=A% - 48 ,ud)'? /2. (22)
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Fig. 4. Increment of modulation instability Imw as a
function of wavenumber k for 0 # 0. 1.-t=0; 2.-t>0

If 4, =-2ui, then increment reaches a maximum
value which equals to (1= 9), where 0< § < 1. The in-
terval of instability in the wave-vector space (Fig.4) is
determined by the requirement Im® > 0 and is speci-
fied by the following inequality

-2(1+1-6%)<h, <-2(1-+1-4?). The set of equa-
tions (16), (19), (21) describes the modulation instabili-

ty in case of the small exceeding of the instability
threshold (i.e. if 1- 0 << 1). At the same time the phases

are located in a neighbourhood of ¢ *,, which are

slowly changing when the perturbation amplitudes
grow up and the pump level is reduced. The equation
(25) and (27) allow to receive information about the be-
havior of phase of separate interactive modes.

For clarification of a character of growing spatial
modulation of the main wave let examine an approxima-

tion theory, when the changes of phases ¢ , = ® ", are

neglected. In that case one may use a small parameter
(6) in order to receive the following expression for
Cos® ,,,Sin® ,

Cos® , = -[A, + 2(u§ - uz)]/Zug;
Sin® = (-0% - 4uld )2 /2ul .
This expression of the trigonometrical functions al-
low to find the equations for an amplitude

2N

(23)

u, = {1- — um2 , 24
o= -5 ;O } (24)
and a phase main mode
dg 2 2 SR
—— =k -uy -4y u 2
ke gt -4y (25)

m>0
For amplitude and phase of the growing modes the
following equations are valid

du”-u{-(5+l(-A2-4A )1/2_iNu2}, 26
dt n 2 n n 5;0 m ,( )
d¢n 2 ‘

D g2-ul-45 u+2-lk

dt 0 ;O m ‘ ‘ 0 (27)

The expression for modulated wave in the conditions
of developed instability in that approximation is repre-
sented in the form

E(x,0)= exp{-ikyxt ip o (6)}u, t

N , (28
PY uy expli0 , I23CostK,f b0/ 20
m>0
where #0790, (= 0)0,079¢-,(=0) - initial

phases of the modes, ¢ = x- 2k,t.
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Thus a second item in (28), i.e. a modulation of the
main wave, represents a sum of periodic perturbation

with a wave-length equal to 21/K,=21(2/4,)"?,

which is in ko/K, = 2k; /b, )"? times greater then a
length of the main mode. It is important that in this ap-
proximation all perturbations don’t shift one relatively
another.

Modes with the wave numbers &, = ko + Ky, and

k_, = ko - Ky, offers the largest linear increment. On
instability development the pump level decrease, effec-
tive increments of the rest of modes decrease and
change into decrements. All that processes follow from
the equations (16)-(27). Thus, the mode competition due
to mechanism of “pump depletion” results in the band-
width reduction of developed instability.

The slow change of channel phase (i.e. d9 ,/dt# 0

) account for slow relative motion of perturbation with
different wave-length (see the second item of (28)). Let
us examine the process of splash formation of modulat-
ed wave amplitude. It follows from equation (19) that
exponential growth of the amplitudes of instability spec-
trum stops when a second item of equation is approach-
ing zero. Also D(0 ) is some value, more less than unit.
At that moment the modulated wave (28) is formed.
Modulated wave is composed of the main mode and a
set of long-wave perturbations, which slowly shift one
relatively another. A rate of instability evolution be-
comes slower sharply and the modes in the outlying
parts of spectrum, which are long-wave and short-wave
parts of spectrum, decrease their own amplitudes. The
modes from a band center are slowly increasing. The in-
stability spectrum gradually converges.

It is important to note that at a quasilinear stage of
instability with decreasing number of modes N or spec-
trum width AK the equation (18) practically doesn’t
change. An average value of the mode amplitudes of in-
stability spectrum rises. In case of discrete spectrum the

expressions 2NI(w’),: D and = +/(u*), 0 (D/2N)"?
are valid. In certain spatial domain will be formed a
splash of modulated wave with an amplitude
NOZ0 JNOD/2. Is it possible to estimate a time of
splash formation! as

T 0 4m /[(dO /dt)pay - (dO /dt)in]. (29)

To imagine the pattern of splash, one may use an ap-
proximation at the beginning of quasilinear stage of in-
stability

22 IdKDﬁ p{-Zi(K- KW)}

AK ’ (0)

where K ,,is a central mode of modulation spectrum,
AK is a spectrum width,0K 0 AK/N is a spectral
width of a single mode. The expression (20) corre-
sponds to an equality 2N O(u’),, =
of induced interference the amplitude of modulation is
given by

(N/AK)J' (D/N)"? exp(- | K- K,,, |/DK)x

K
x Sin(K Ox)dK = JD DM
(AK) Ox* +1

D . In the presence
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For modulation instability even under the small
threshold crossing, the spectrum width A K is insignifi-
cantly smaller then the wavenumber of a rapidly grow-

ing modulation K ,,. The most intensive splash is ob-

served on a spatial interval Ax0 1/AKO1/Ky,,,
which is visibly less, then an average length of modula-
tion 271 /Ky, (Fig.5). The amplitude of a modulation

splash is proportional to vDIN 0 (DIAK/HK), i.e. it is

proportional to the square root of the ratio of spectrum
width to the spectral width of a single mode. The value
of imperfection level D, the value of spectrum width
A K (or the number of modes N) and the value of the
amplitude of a modulation splash have the greater, if the
level of energy absorption decreases.

During the instability evolution the spectrum width
AK and the amplitude of a forced interference modula-
tion splash (21) decrease.

Let discuss now the behavior of modulated wave in
the neighborhood of the modulation splash. Spatial in-
terval, where the amplitude of modulation is large, is
1/BK D 1/Ky,, 010/ky if ko0 10Ky, . i.c. that inter-

val is wider then a wave-length of the main mode. In the
domain of modulation splash there are a few wave-

length of the main mode, if ko0 20Ky, . When the
system comes to continuous spectrum of instability (
0K - O0,N - o) a forced interference modulation
splash will be infrequent one, but with the significant
amplitude. Thus the phenomena of forced interference
of instability spectrum modes causes an appearance of
anomalous splash of the fine structure of perturbation
amplitude at early stage of nonlinear rate of instability.

Il

2

il

i i 10 15 bl 5 kil

Fig.5. The wave amplitude behavior in the neighbor-
hood of modulation splash under following conditions:
D = 0.7, a variation interval of x is equal to 31.4, a
wave vector of the main mode k, = 10, a wave vector of
the central mode of modulation spectrum Ky, = 1, a
spectrum width of modulation A K = 0,8. The white line
in the picture corresponds to the envelope of modula-
tion spectrum or, in other words, to the second item in
(17)

Frequency of splash appearance is determined by
difference of phase velocity of modes. These modes
form the wave modulation. The amplitude of splash de-
pends on the number of modes or on phase spectral con-
centration in the instability spectrum (see Fig.5).
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From the equations (16)-(27) one finds that an am-
plitude of the main mode changes from the initial value
ug(t=0)=1 todi . At the same time the modes of unsta-
ble spectrum at first increase, then after the sign reversal
of second term of equation (19) (see also (26)) decrease
their’s amplitudes. Finally only two modes remain,
where the wavenumbers are near kot K,., ko~ K,
(where K, = i ) and amplitudes are equal to
0o(-4d)/2.

In nonlinear systems the phase locking causes the
regulation and stabilization of a phase position in well-
defined reference frame (at the expense of attractors ap-
pearance and static stabilization). In case of the quasi-
linear operation the phase locking means somewhat dif-
ferent. This is so indeed, only relative phase velocities
are given by the pump, which determines in that way
the phase dynamics of unstable modes (that is well-or-
dered dynamics, without statical stabilization).

4. THE FINE STRUCTURE OF A LASER
PULSE

We consider this phenomena using, the operating
regime of a laser. In one-dimentional case, the nonlinear
set of equations, describing the excitation of laser radia-
tion slightly above the generation threshold, can be writ-
ten in the form

de,/dttKe,-il',e, = -ip,,

n*

dp,/dt+ T p, =ile,,

d/J/dt:FO(l-p)—Imz ean’ (32)

where €, , p, — the dimensionless electric field and po-

larization, # — relative dimensionless inverse popula-
tion rate in two-state active medium, [ ¢, ,K — inverse
time of the relaxation of the inverse population, line
width, rate of losses in the resonator chamber, normal-
ized to the maximum growth rate (Im® ),,,y in the ab-
sence of any losses (K = 0). Taking account of the loss-
es, the maximum value of the growth rate of an instabil-
ity exciting radiation electromagnetic waves correspond
to the detuning value (2 , = 0) is equal to

M0 1y /Tm o = %{[4;1 F-TYT - 4T (33)

We also neglect below any spatial perturbations of
the population inversion 1= § << §i

On condition slightly above the threshold
Imw << T,k the equations are changing

dAn/dT = [1-/\211- z Amz]A”, (34)

do,/dr=-N, 0" '[1-8%\2], 3%

where E, = A,exp{o 1}, 1= -4k + T)(KT - 1),
le, P K /T K +T) ' =|E, |”,
52=(1—Kr)(r2—1)"(;( +F)",

A=A 2Dk +T) ' (A-kT)"
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Fig.6. Model of the mode competition for laser pulse
formation

In environment of slow amplitude change inthe
spectrum of instability many modes (Fig.6) with compa-
rable intensity remain. There is more than enough time
for the phases to form quasiperiodical fine structure of a
laser pulse is show in Fig.7. The phase velocity of each

mode is practically proportional detune value 4 .
A(x)

0 100 T
Fig.7. The amplitude pulse development at change T
from 0 to 100, number of modes is N=50, 0 = 0,35

The paired modes with * |7 |support periodical

modulation of radiation with period 0 27 /A . The su-

perposition of such modulations forms the fine structure
of the laser pulse.
At a great time the modes with large detuning value

A, insensibly decrease and a single-mode generation is
realized [3].
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SOPEKT UHIYIIUPOBAHHON UHTEP®EPEHLIUU 1 ®POPMHUPOBAHUE TIPOCTPAHCTBEHHO
BO3MYIIEHHOM TOHKOM CTPYKTYPbI BHEPABHOBECHOM OTKPBITON CUCTEME

B.M. Kyknun

[Toka3zaHo, 4TO MOJBI HECTAOMIBHOTO CIEKTPA HEYCTOHYMBOCTH BOJIM3H ITOpora criocoOHbI COPMHUPOBATH /101
'O JKUBYIIYIO TOHKYIO CTPYKTYPY X aHOMaJIbHbIe HHTEP()EPEHINOHHBIE BCIUIECKH, HHAYIIMPOBAaHHBIE HAKAUKOM.

E®EKT IHIYKOBAHOI IHNTEP®EPEHIIIi TA ®OPMYBAHHSI IIPOCTOPOBO 35YPEHOI TOHKOI
CTPYKTYPH Y HEPIBHOBAKHIN BIIKPUTII CUCTEMI

B.M. Kyknin

[Toxa3zaHo, 110 MOIM HECTaOIIBPHOTO CIIEKTPY HECTIHKOCTI TOOIU3Y MOPOry 3Mi0HI C(hOPpMYBaTH TPUBAJIO KHUBYTY
TOHKY CTPYKTYpY Ta aHOMaJIbHi iHTep(epeHIIiiiHi CIUIeCKH, iIHAYKOBaHI HAKaYKOI0.
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