MATHEMATICAL MODEL OF INHOMOGENEOUS CAVITY CHAIN
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Mathematical model of inhomogeneous chain of cylindrical cavities is developed. Coupling coefficients in the
inhomogeneous cavity chain can be calculated with definite accuracy for the structure with arbitrary parameters.
Influence of non-resonant fields and “long-range” couplings on the characteristics of the structure is taken into

account by calculation of the coupling coefficients.
PACS: 29.17 +w

1. INTRODUCTION

The equivalent circuit analysis is widely used for
description of the behavior of accelerating structures
(see, for example, [1-3]). It proves to be useful at the
stage of primary study of electrodynamic properties of
the structure and its conceptual design. Using this
approach (equivalent circuit analysis) the technique of
consecutive cell-tuning in homogeneous and strongly
inhomogeneous structures is developed (see [4,5]).
Using the technique of consecutive cell-tuning the
comparative analysis of “random” and constant gradient,
quasi-constant gradient structures has been done in [5].
Next parameters were chosen for comparison: energy
gain, field gradient and damping. It was shown that
“random” structures are comparable with constant
gradient and quasi-constant gradient ones. However,
justification of using of equivalent circuit analysis for
description of chains of coupled cavities must be made
with the help of rigorous electrodynamic methods.

In [6] precise equations describing the RF-coupling
of two cavities is obtained. The method of partial cross-
over regions is used. On the base of these equations the
dependence of coupling coefficients versus frequency,
iris radius, etc. is calculated. The analytical solution of
these equations for various limited cases is presented
in [7]. It is shown that in the case of iris radius tending
to zero and infinitely small disk thickness (¢ — 0, ¢ = 0)
the obtained equations agree with those in [2] obtained
on the base of quasi-static approach. In [8] the method
of partial cross-over regions is used to describe an
infinitely long chain of identical cylindrical cavities
coupled through irises. The dependence of the phase
shift per period versus frequency is calculated for
structures with various parameters.

Using of the method of partial cross-over regions for
description of inhomogeneous chain of cylindrical
cavities reduces to clumsy formulas and difficult
calculations. In this work we propose more simple, from
our point of view, method for description of
inhomogeneous structures. This method is based on
rigorous electrodynamic approach as well.

2. ELECTRODYNAMIC APPROACH

Inhomogeneous accelerating structure consists of an
array of ideally conducting co-axial cylindrical cavities
coupled through dividing irises with radii ; and
thickness ¢. The radii and lengths of the cavities we
denote by b; and d; (see Fig.).
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Longitudinal cross-section of inhomogeneous chain
of cylindrical cavities

The field functions in the region z; <z < z+d; are
represented in terms of cavity modes:
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where A,(,? is the amplitude and ® (’) is the resonant
frequency of axially-symmetric Eo,n,)-mode in the i-th

cavity; B = Ao Ju )

The field functions in the region # <z < t+¢ (disk
aperture) can be expressed in terms of modes of uniform
waveguide of cylindrical symmetry:
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Tangential components of electric field at the left
and right boundaries of the i-th disk aperture are
expanded into the series with the complete set of the
first order Bessel functions:
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where 0 < r < a;. Sign (+) refers to the right boundary of
the disk and sign (-) — to the left one, correspondingly.
As the tangential component of electric field is
continuous at the both boundaries of the i-th disk,
coefficients C and w are connected via the following
equations:

KD WD exp(hr) - wik
h(’) 2sh(hr)

cy =

“4)
i . K wiexp 10 - w
270 25h(hPt)

Coefficients in expansion (1) are determined by the

tangential components of electric field Efi) and E ﬁ” D,
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where N, ,Si}), is the norm of Eymy-mode in the i-th cavity.

By matching tangential component of magnetic field
in the both planes of the i-th disk aperture (0 < r < @),

one can write the equations for the coefficients A(’ 1),
A;% ,wi, w
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The left and right parts of Egs.(6) are functions of
variable r. Since the functions are equal the expansion
coefficients of these functions with the complete set of

orthogonal functions J; (k El;(zi) r) are equal too:
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Egs. (4,5) let us to express all the coefficients A,
except one, for example, A1, via Wy . Then Egs. (7)
turn into the following inhomogeneous set of algebraic
equations for W :
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Since Wwy: are the expansion coefficients of
tangential at the disk aperture cross-section component
of the electric field, Egs.(8) are the interaction
equations for the fields defined in the circular regions.
There are several interesting results that may be
obtained from Egs. (8). One is that the fields of only
four circular regions interact directly: at the left and

right boundaries of the i-th disk aperture w@ and ng) )
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where n=-N..0..N;, j=i-N+l, i-N+2, ..., i1, i,
i+1, ..., i+ N.

From Eq. (9) one can deduce that the electric field
tangential component in the circular regions, through
which i-th cavity is connected with other elements of the
structure under consideration, are only determined via
the Eoio-mode amplitudes in the cavities. Eq. (5) for Eoio-
mode amplitude in the i-th cavity will have the form:
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where £t(i) are the well known coupling coefficients

derived on the basis of quasi-static approximation (see,
for example, [2]) which are given by
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at the right boundary of the (i—1)-th disk aperture WE’[ D
and at the left boundary of the (i+1)-th disk aperture
WE” D1t follows from the fact that ith cavity contacts
directly only with two neighboring cavities: (i—1)-th and
(i+1)-th. Another important result coming from Egs. (8)
is that the interaction of fields in adjacent apertures is
described by the terms which contain factors

Tn(s’?* ), T"n(s’ L) It can be shown that

7@ 7LD L0 when ¢, — 0 and 1=0. At the

same time factors Tn(si’_) and TU ) in terms, which

ns
describe fields interaction at the left and right
boundaries of single aperture, tend to constant values
independent of @; when @; — 0 and ¢ = 0.
The solution to the set of linear algebraic equations
(8) can be written in the following form:
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The choice of the value of N depends on the fact
how many couplings of the i-th cavity with another ones
we want to take into account. Index j takes the values i—
N+1, i=N+2, ..., i1, i, i+1, ..., i+ N, correspondingly.
For paired couplings (each cavity is coupled only with
adjacent ones) N = 1. Substituting expression (9) in
Egs. (8) one can obtain inhomogeneous set of linear

-
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The coupling coefficients A have frequency
dependence. They are given by
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It is necessary to choice the number of terms in sum
on n in Eq. (11) equal the number of equations (10).
Thus, the problem of coupled cavities has been
rigorously reduced to the problem of the coupling of
electric fields which are determined in circular regions.
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Egs. (11) are similar to the equations of equivalent
circuit analysis. Only one equation corresponds to each
cavity. Existence of infinite number of cavity modes
besides Egp-mode (non-resonant fields) affects on the
form of coupling coefficients /A. Besides the term which

contains factor Al(é) the number of terms in the right-

hand side of Egs. (11) depends on the fact how many
couplings of the considered cavity with another ones we
want to take into account.

3. CONCLUSIONS

Mathematical model of inhomogeneous chain of
cylindrical cavities is developed. This model combines
the explicitness of the model of equivalent coupled
circuit chain with the possibility to control rigorously
the influence of non-resonant fields and “long-range”
coupling of cavities on the structure characteristics.
Coupling coefficients can be calculated with definite
accuracy for the structure with arbitrary parameters.
Influence of non-resonant fields and “long-range”
coupling on the characteristics of the structure is taken
into account by calculation of the coupling coefficients.
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MATEMATHYECKAS MOJIEJb HEOJHOPO/JHOM NEMNOYKH CBS3AHHBIX
NUINHAPUYIECKHUX PE3OHATOPOB

H.U. Auzaukuii, E.JO. Kpamapenko

Pazpaborana mMaremarmdeckass MOZIETb Ul OIMCAHHWA HEOAHOPOAHOW IETTOYKH CBA3aHHBIX IMIMHIPUIECKHX
pe3onaropoB. Koah¢duumeHTs! CBS3M B HEOAHOPOAHON LETIOYKE PE30HATOPOB MOTYT OBITh PACCUMTAHBI C 33laHHON
TOYHOCTBIO [UISL CTPYKTYpbl C HPOM3BOJIBHBIMM IMapaMeTpaMu. BiusHMe Hepe3oHaHCHBIX MHONed M “HalpHUX’
B3aMO/ICHCTBHUI Ha XapaKTEPUCTHKU CTPYKTYPBI YUUTBIBAETCS IIPU pacyeTe KO PHUIIEHTOB CBA3H.

MATEMATHWYHA MOJEJIb HEOJHOPIZHOI'O JIAHIIIOKKA 3B’AA3AHUX
OUJITHAPUYHUX PE3OHATOPIB

M.I. Aiuzauvkuit, K.JO. Kpamapenko

Po3pobiieHo maTeMaTHUHy MOJENs M ONUCY HEOJHOPIAHOTO JIAHIIOXKKA 3B SA3aHUX IWIHIPUIHUX
pe3onaropiB. KoedimieHTn 3B’A3Ky Y HEOTHOPITHOMY JAHITIOKKY PE30HATOPIB MOKYTh OYTH PO3paxoBaHi 3 IIEBHOIO
TOYHICTIO [UISl CTPYKTYpH 3 OyIb-SIKHMH IapameTpaMy. BIUIMB Hepe30HaHCHUX IOJIB Ta “HajieKux” B3a€EMOIiH Ha
XapaKTEPUCTUKH CTPYKTYPH BPaxOBYETHCS IPU pO3paxyBaHHI KOS(ili€HTIB 3B’ 3KY.
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