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Comparison of two schemes of stochastic acceleration of charged particles is carried out: at interacting with the field

of wave with randomly changed phase and with the field of regular wave in the conditions of overlapping of non-linear

resonances. In the absence of conditions of the resonances overlapping the spectral regions of random field which

most effectively transfer their energy to particles are found. In all investigated cases, the presence of overlapping

non-linear resonances led to more efficient schemes of stochastic acceleration and heating of particles in comparison

with schemes involving random fields.
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1. INTRODUCTION

Now there are two basic mechanisms of stochastic
acceleration and heating of charged particles by the
fields of electromagnetic waves. First of all it is an en-
ergy transfer from random field to particles [1, 4, 5].
Such energy transfer has been specified for the first
time in paper [1]. Then such schemes of the energy
interchanging for heating and breakdown have been
investigated in details in papers by Ya.B. Fainberg
and V.I. Karas’ (look, for example, [5] and references
therein). Such schemes acceleration and heating are
effective even in the absence of the resonant inter-
action of particles and fields. However, when it is
possible to fulfill the conditions of the resonant in-
teraction between waves and particles, more attrac-
tive scheme of resonant interaction of particles and
regular waves under conditions, when the nonlinear
resonances overlap, is seemed. The overlaps of non-
linear resonances provide the conditions under which
the dynamics of the particles is similar to the dy-
namics of particles in the random field. Significant is
the fact that the field acting on the particle is always
greater than the field which acts on the particles in a
random field (of course at the same energy acting on
the particles of the field). As an example, of the ef-
fective heating of the particles by the field of regular
waves can be caused by scheme of heating and accel-
eration of the particles in the plasma traps. Thus, at
plasma heating in the magnetic traps, interaction of
the charged particles with wave field occurs in nar-
row region of space. In this region, the particles are
in resonance with the wave. After passing this re-
gion, they gain energy with high efficiency. Further
dynamics of the particles is almost independent on
the presence of an electromagnetic wave. Reflected
from the magnetic mirrors, the charged particles fall
back into the region of the resonant interaction. Re-
peated the passage of particles through resonance re-

gions leads to their heating. In such scheme of heat-
ing it is supposed that at path from the resonance
region to the magnetic mirror and back, particle in
random way changes the phase relationship with the
wave. The randomness origin is not discussed in most
cases. Implicitly it is supposed that the regime of dy-
namic chaos or available fluctuations in the plasma
are sufficient for such change. Perhaps these two rea-
sons may exist simultaneously.

Also in the paper [2, 3] plasma heating by the reg-
ular field of a laser radiation in the conditions of over-
lapping of non-linear resonances was considered. In
the same place comparing of efficiency of the energy
transfer from field to the particles by this mechanism
and random fields has been carried out.

It has been shown that heating by the regular
fields is much more effective, than heating by random
fields. However in this paper comparison has been
provided with delta-correlated noise field. In this case
energy of a wave is distributed on very broad spec-
trum (”spread”). In paper [6] attention has been ap-
plied on regular waves, phases of which on the average
for the period in random way (jump) were changed.
It was noted that in this case energy of the wave is
concentrated in narrow spectrum. The analysis of
particles dynamics in the field of these waves speci-
fied on efficiency of the energy transmission of such
waves to energy of the charged particles. However
the comparative analysis with efficiency of accelera-
tion in regime with dynamic chaos it wasn’t carried
out. In the present paper we give such analysis.

2. DYNAMICS OF PARTICLES IN THE
FIELD OF EXTERNAL

ELECTROMAGNETIC WAVE

Let’s consider charged particle moving in the external
magnetic H⃗0 field , guided along z axis and the field
of plane electromagnetic wave with arbitrary polar-
ization [2, 3]. Equations of motion may be written in
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the form:

˙⃗p = (1− k⃗p⃗

γ
)Re(ε⃗eiΨ) +

ωH

γ
[p⃗h⃗] +

k⃗

γ
Re(p⃗ε⃗)eiΨ ,

˙⃗r = p⃗/γ; Ψ̇ = k⃗p⃗/γ − 1 , (1)

where τ ≡ ωt, h⃗ ≡ H⃗/H0, ωH ≡ eH0/mcω,

Ψ ≡ τ − k⃗r⃗ + ξ(τ), ξ(τ) is stochastic function. Be-
low we consider separately the dynamics of particle
motion in the wave field with random phase and in
the wave field when the random phase modulation is
absent ( ξ(τ) = 0). At small strengths of the field we
have non-relativistic motion of the particles. In this
case, the solution of equation (1) for the velocity of
the particles is expressed analytically. The average
rate of energy change of electron under the action of
the field pulse g(t) with randomly varying phase can
be characterized by the value of average power

P (t) =
1

t− t0
Re

∫ t

t0

dt′g(t′)v(t′) . (2)

Here v(t) = vx(t)+ivy(t) =
∫ t

t0
dt′ exp[iωH(t′−t)g(t′)

is solution of the equations of motion (1) in the non-
relativistic approximation, and the pulse of a field is
g(t) = αxE0 cos(Ψ(t)) + iαyE0 sin(Ψ(t)). Thus the
average rate of the electron energy change during the
pulse for a linearly polarized wave can be represented
as the Fourier components of the average spectral
power at a frequency ωH :

PT =
1

2T

∣∣∣∣∣
∫ T/2

T/2

Re(g(t′))eiωHt′dt′

∣∣∣∣∣
2

=
2π2

T
|g̃TωH |2.

(3)
As can be seen from this relation, a maximum energy
transfer will occur in the case where the frequency
difference ∆ω = ω − ωH between the frequency of
the external field and the cyclotron frequency is suf-
ficiently small. Thus, at particles interaction with
the wave field in the absence of the external mag-
netic field the maximum efficiency of energy transfer
between field wave with randomly varying phase and
the particle can be expected in the low frequency re-
gion. In the field of the wave with the regular phase of
the interaction takes place under resonance condition

kzvz0 + s
ωH

γ0
− 1 = 0, s = 0,±1,±2, ... (4)

When these conditions are fulfilled, shortened equa-
tions, describing the motion of the particle in an iso-
lated nonlinear resonance, can be obtained

ṗ⊥ =
(1− kzvz)

p⊥
Wsε0 cosϑs, ṗz =

kz
γ
Wsε0 cosϑs,

θ̇s = ∆s ≡ kzvz + s
ωH

γ
− 1, γ̇ =

ε0
γ
Ws cosϑs,

(5)
where:

Ws ≡ αxp⊥
s

µ
Js(µ)− αyp⊥J

′
s(µ) + αzpzJs(µ) ,

µ ≡ kzpz/ωH .

We suppose that at the interaction of the particles
with wave the change of the particle energy is small
γ = γ0 + γ̃s, |γ̃s| << γ0.

Then, to determine γ̃s and θs one can obtain
closed system of equations

dγ̃s

dt
=

ε0
γ
Ws cosϑs (6)

and define the width of the nonlinear isolated reso-
nance

∆θs = 4

[
(k2z − 1)ε0Ws

γ2
0

]
or∆γ̃s = 4

[
ε0Ws

(k2z − 1)

]
.

(7)
Distance between neighboring resonances

δγs = γ0,s+1 − γ0,s =
ωH

(1− k2z)
. (8)

Change in the character the particle motion from reg-
ular to chaotic, is known to happen under the con-
dition of overlapping of nonlinear resonances. This
condition is:

ε0 ≥ ωH

16Ws(1− k2z)
. (9)

3. MODEL OF WAVE WITH RANDOMLY
JUMPING OF PHASE

Above, we have an analytical expression for the trans-
fer of energy to the charged particles in a random
field for the non-relativistic case. Unfortunately, in
the fields of high intensity (relativistic case) analyti-
cal expressions are difficult to obtain. Therefore, the
following numerical methods will be used for inves-
tigation of the dynamics of charged particles in ex-
ternal fields of high tension. In this case, the main
difficulty arises in the mathematical modeling of the
external fields with random phases. In this section,
we consider one of the modeling capabilities of such
fields.

For a basis for formation of the wave with chaoti-
cally jumping phase, the travelling harmonic wave of
kind f(t, r⃗) = a cos(ωt − k⃗r⃗ + φ0) is taken (regular
wave), to phase of which we will add stochastic func-
tion of time ξ(t) with probability density having uni-

form distribution f(t, r⃗) = a cos(ωt− k⃗r⃗+φ0 + ξ(t)).
For a numerical analysis the scheme of numerical
calculation which allows to vary the quantity of an
interval of phases (−π < δφ0 < π ) in which there
is the jump of phase change, is realized. Also the
possibility of selecting the interval of time in which,
at random moment of time, the phase jump occurs
is realized. Duration of jump is supposed consider-
ably smaller then the wave period. On plots Fig.1,
as example, one can see the initial part of realiza-
tion (length of 1000 period) time dependence of the
wave field strength at random jump of the phase
at each period of wave for interval of phases jump
( −π < δφ0 < π) and spectral density of power
of this realization. From these plots it is visible
that phase jump occurs at random moment of time
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at each period of the regular wave (Fig.1,a), and
quantity of this jump also is random and lies in the
range of phases (−π, π). The spectrum (Fig.1,b)
is widened enough with maximum near to unity.

a

b

Fig.1. Field of wave and spectrum

On plots Fig.2 spectrums of wave with chaotically
changing phase are given at various values of inter-
val of time on which there is jumping of phase and
quantity of interval of the phase jumps. One can see
fromthese plots that, with increasing of the interval

a

b

Fig.2. Spectrum of wave.
a – single period with jump (−π/2 < ∆φ0 < π/2);

b – 5-th period with jump (−π < ∆φ0 < π)

of time on which there is jump of the phase and re-
duction of an interval of the phase jumps, the spec-
trum of the wave is considerably narrowed. Spectral
band-
width reduction is proportional both to reduction of
quantity of jump, and increasing interval of time in
which this jump takes place.

4. DYNAMICS OF PARTICLES IN THE
FIELD OF WAVE WITH RANDOM

CHANGING PHASE

Let’s consider charged particle moving in the exter-
nal magnetic field H⃗0 , guided along z− axis and the
field of plane electromagnetic wave with arbitrary
polarization [2, 3]. The dynamics of the particle
obeys to the vector equation (1), in which ξ(t) is
the random function change under law described in
the previous section. Numerical modeling of the
particle motion in the field of wave with chaotically
changing phase is carried out in the absence of a
magnetic field H⃗0 = 0 at various intervals of change
of the phase jump (−π < ∆φ0 < π) and various
intervals of time in which, at random moment, there
is the phase jump. Time dependence of the energy
change for single particle with initial phase Ψ0 and
averaged on ensemble from 30 particles with ini-
tial phases from interval (−π < φ0 < π ) for case

a

b

Fig.3. Energy particle gain at the field.
a – one particle; b – ensemble averaging

of single jump at period and interval of the phase
jumps ((−π < ∆φ0 < π ) ), is presented in Fig.3.
On the sameplot, for comparison with the diffuse
law of the energies growth with time, the curve
of the time dependence of the energy change is
given: γd = α

√
t at value of coefficient α = 0, 4.

The parameter of the wave force has been chosen
ε⃗ = eE⃗0/mcω. From the plot 3a one can see that
single particle at interaction with field of wave in
random way obtain and lose energy. However at
ensemble averaging of particles (particle with var-
ious initial phases) certain regularity is observed.
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On Fig.4 plots of time dependence of the parti-
cles energy, averaged on ensemble of 30 particles
for various values of the phases jump ∆φ0 are given.

a

b

Fig.4. Energy particle gain at the field with
random jumping phase.

a – single period with jump (−π/2 < ∆φ0 < π/2);
b – 5-th period with jump (−π < ∆φ0 < π)

From plots Fig.4 one can see that at ensemble aver-
aging of particles the time dependence of middle en-
ergy has character close to diffused — smooth curves
γd = α

√
t with α = 0.55 - plot 4,a and α = 0.25

— plot 4,b. There is a certain optimum quantity
of an interval of jumps of phase at which heating of
particles is most effective.

For a more detailed analysis of the influence of
different parts of the spectrum in the dynamics of
energy exchange of charged particles with the wave
field with randomly changing phase of this wave iden-
tified three main region of the spectrum: a low, ba-
sic and high frequency. In this case, the missing
parts of the frequency spectrum supplemented by
zero values. With the help of the inverse Fourier
transform has been restored realizations which cor-
respond to each parts of the spectrum. Figs.5, 6, 7
shows plots the spectral power parts of spectrum and
the corresponding initial part of restored realization
(−π < φ0 < π ) for regions low 10−3ω0 < ω < 0.5ω0,
basic 0.5ω0 < ω < 1.5ω0 and the high frequency
ω > 1.5ω0.

For each of the reconstructed field realizations has
been investigated the dynamics of particles in these
fields for different values of the field amplitude.

For small amplitudes of the field strength of the
wave parameter’s ε ≤ 0.01 or ε ≤ 0.1, the main con-
tribution to the energy exchange between the field
and the particle is in the low frequency range. Indeed,
at small strengths of field nonrelativistic motion of

particles takes place. In this case, the average rate
of change of the electron energy by pulse field g(t)

a

b

Fig.5. a – low frequency part of the spectrum;
b – initial part of realization corresponding to the low

frequency part of the spectrum

a

b

Fig.6. a – main part of the spectrum;
b – the initial part of realization corresponding to the

main part of the spectrum
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can be characterized by the value of average power.
The expression for it is represented by formula (6).

a

b

Fig.7. a – high frequency part of the spectrum;
b – initial part of realization corresponding to the high

frequency main part of the spectrum

a

b

Fig.8. The average pulse ε = 0.01.
a – the low-frequency part of the spectrum;

b – the main part of the spectrum

As seen from this formula, the maximum energy
transfer will occur in the case when the
frequency difference ∆ω = ω − ωH between the fre-
quency of the external field and the cyclotron fre-
quency is small enough.

Thus, at interaction of particles with field of wave
without external magnetic field, maximum efficiency
of energy transfer between the field and the par-
ticle can be expected in the low frequency region.
This is confirmed by numerical analysis. Figs.8-
10 shows graphs of the longitudinal momentum

a

b

Fig.9. The average pulse ε = 0.1.
a – the low-frequency part of the spectrum;

b – the main part of the spectrum

a

b

Fig.10. The average pulse ε ≥ 1.
a – the low-frequency part of the spectrum;

b – the main part of the spectrum

(energy)of the particles from time to time, averaged
over an ensemble of 30 particles using the restored re-
alization from various parts of the spectral expansion.
Graphics averaged momentum for the high-frequency
part of the spectrum are similar graphs for the mid-
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dle part of the spectrum. As seen from these graphs
for small field amplitude (ε ≥ 1) a major role in the
energy exchange of particles with particle field has
low frequency.

At large values of the field amplitude (ε ≥ 1) dy-
namics of the energy changes qualitatively. The main
contribution to the energy transfer makes the main
part of the spectrum (see Fig.10).

Thus, it is possible to speak that there is certain
transitional process that consisting in the changing
of the spectrum region, which provides the main con-
tribution to the exchange energy of the particle and
the field. This transitional process takes place in the
interval of the field strength variation from ε = 0.1
to ε = 1 .

5. DYNAMICS OF PARTICLES IN THE
FIELD OF THE REGULAR WAVE IN THE

CONDITIONS OF NON-LINEAR
RESONANCES OVERLAPPING

Let’s consider the dynamics of particles in the
field of plane electromagnetic wave and in exter-
nal constant magnetic field without random jumps
of phase. This dynamics is described by the equa-
tions (1) at H⃗0 ̸= 0 and ξ(t) = 0 . For mainte-
nance of conditions of non-linear resonances over-
lapping, and also for the subsequent comparison
of two methods of heating, parameter of the wave
force is ε⃗ = 1 . In these conditions dynamics
of charged particle, has stochastic character, with
the characteristic random gain and loss of energy,
Fig.11. However, as well as in the case with phase
jumps, energy of the ensemble averaging particles

a

b

Fig.11. Energy particle gain at overlap resonances.
a – one particle; b – ensemble averaging

energy changes under the law close to diffusion low
with coefficient α = 0.6 (Fig.11,b).

6. CONCLUSIONS

Finally, we will compare the efficiency of gain of the
energy particles in random field and in the regular
wave (in conditions overlapping of the resonances).
At such comparison we will proceed from equality of
energy in the wave with jumping phase and in the
regular wave WN = Wr. If the amplitude of the reg-
ular and random waves are the same, as we have seen
above, gain of the particles energy in these fields is
approximately the same ∆γN ≈ ∆γR.

Energy of the noise wave: WN = ε2N∆ωN ,
∆ωN ∼ 0.4. Energy of the regular wave:
WR = ε2R∆ωR, ∆ωR ∼ 1/Q , Q - is quality factor.
As 1/Q = 10−2...10−7 , higher level of energy of
wave is necessary for achievement the same level of
the particles energy in the field of wave with jumping
phase. Greater efficiency of stochastic gain of energy
of charged particles by field of the regular wave in the
conditions of overlapping of non-linear resonances is
caused by narrow spectral line of such radiation, and
also presence of cyclotron resonances. It is possible to
expect that at particle motion in the field of regular
waves in the conditions of cyclotron resonances pres-
ence of rare random jumps, even without overlapping
of non-linear resonances, will be also effective. In this
case the spectrum is narrowed. The particle moves in
an intensive field. Preliminary investigations of such
dynamics of particles really show the efficiency of this
scheme of stochastic gain of energy. Let’s notice that
such scheme of stochastic gain of energy is similar to
the scheme of heating of particles in magnetic traps.
Efficient difference is the long-term motion of parti-
cles in synchronism with wave (resonances) at which
the gain of velocity of particles is proportional to time
of resonant interaction with field. Short jumps in this
case play a role of the phase of particle loss, relatively
to the wave at motion from mirror to mirror in traps.
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ÑÒÎÕÀÑÒÈ×ÅÑÊÎÅ ÓÑÊÎÐÅÍÈÅ ÇÀÐßÆÅÍÍÛÕ ×ÀÑÒÈÖ

Â.À.Áóö, Â.Â.Êóçüìèí, À.Ï.Òîëñòîëóæñêèé

Ïðîâåäåíî ñðàâíåíèå äâóõ ñõåì óñêîðåíèÿ çàðÿæåííûõ ÷àñòèö � ïðè âçàèìîäåéñòâèè ñ ïîëåì âîëíû

ñî ñëó÷àéíî èçìåíÿþùåéñÿ ôàçîé è ñ ïîëåì ðåãóëÿðíîé âîëíû â óñëîâèÿõ ïåðåêðûòèÿ íåëèíåéíûõ

öèêëîòðîííûõ ðåçîíàíñîâ. Âî âñåõ ðàññìîòðåííûõ ñëó÷àÿõ ýôôåêòèâíîñòü óñêîðåíèÿ ïðè âûïîëíåíèè

óñëîâèé ïåðåêðûòèÿ íåëèíåéíûõ öèêëîòðîííûõ ðåçîíàíñîâ îêàçûâàåòñÿ áîëåå âûñîêîé.

ÑÒÎÕÀÑÒÈ×ÍÅ ÏÐÈÑÊÎÐÅÍÍß ÇÀÐßÄÆÅÍÈÕ ×ÀÑÒÈÍÎÊ

Â.Î.Áóö, Â.Â.Êóçüìií, Î.Ï.Òîëñòîëóæñüêèé

Ïðîâåäåíî ïîðiâíÿííÿ äâîõ ñõåì ïðèñêîðåííÿ çàðÿäæåíèõ ÷àñòèíîê � ïðè âçà¹ìîäi¨ ç ïîëåì õâèëi ç

ôàçîþ, ùî âèïàäêîâî çìiíþ¹òüñÿ, é ç ïîëåì ðåãóëÿðíî¨ õâèëi â óìîâàõ ïåðåêðèòòÿ íåëiíiéíèõ öèê-

ëîòðîííèõ ðåçîíàíñiâ. Ó âñiõ ðîçãëÿíóòèõ âèïàäêàõ åôåêòèâíiñòü ïðèñêîðåííÿ ïðè âèêîíàííi óìîâ

ïåðåêðèòòÿ íåëiíiéíèõ öèêëîòðîííèõ ðåçîíàíñiâ âèÿâëÿ¹òüñÿ áiëüø âèñîêîþ.
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