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Large scale structures play an important role in self-organization of drift wave turbulence. Large scale
perturbations of plasma flow and magnetic field are spontaneously generated in generic electromagnetic drift
wave turbulence via the action of Reynolds stress and electromotive force. Initial large scale perturbations are
amplifed by positive feedback due to the modulations of wave packets by the shearing effect of the large scale
flow and/or by the perturbed large scale magnetic field. As a result, the propagation of small scale wave packets
is accompanied by the instability of a low frequency, long wavelength components. Anomalous transport due
to drift wave turbulence may also be unstable with respect to the large scale perturbations of plasma profile.
In this case the instability occurs as a result of a positive feedback response of the anomalous flux to the large
scale variations of plasma temperature.

INTRODUCTION

It has recently been realized that generation of the
large scale shear flow (zonal flow) plays an important
role in self-regulation of the drift wave turbulence [1-
3]. Spontaneously excited large scale flows occur as
a result of the intrinsic non-ambipolarity of the ra-
dial plasma flow, or, in other words, due to the ra-
dial momentum flux [4,5]. The transfer of wave en-
ergy towards the long wavelength region and the for-
mation of large scale structures (zonal flows and con-
vective cells) may be viewed as a result of the inverse
cascade in two-dimensional and quasi two-dimensional
geostrophic fluids [6]. The strongly sheared flow as-
sociated with localized structures leads to turbulence
suppression and enhancement of confinement in a toka-
mak. Zonal flows are defined here as poloidal and
toroidally symmetric (qz = qθ = 0) perturbations with
a finite radial scale q−1r larger than the scale of the un-
derlying small scale turbulence, qr � kr, q is the wave
vector for large scale motions, k is the wave-vector of
small scale turbulence, and r, θ, and z are axis of a
straight cylindrical tokamak.
Opposite to zonal flows is another class of coher-

ent large scale structures, streamers which are radially
elongated formation with short poloidal wavelength,
qθ >> qr. The latter structures may be an underlying
mechanism for nonlocal, radially extended transport
events or avalanches that have been recently identified
in turbulent transport [7-10]. Both types of structures
are nonlinearly generated in drift wave turbulence.
In the electromagnetic case, generation of the large

scale magnetic field is also possible [11-13] and can be
considered as a fast dynamo process [14]. Magnetic
structures (magnetic islands and magnetic streamers)
have been studied as a possible mechanism of regula-
tion and enhancement of the electron transport [15,16].
We consider the dynamics of small scale drift wave

turbulence coupled with slow, large scale perturba-
tions of the electrostatic potential, magnetic field, and
plasma temperature. We demonstrate how the large
scale coherent structures in plasma flow, magnetic field

and plasma temperature may be spontaneously gen-
erated. For simplicity we consider them separately,
though in general case, the large scale magnetic field,
shear flows and transport events may be coupled [17].

SHEAR FLOW INSTABILITY

Instabilities of the shear flow can be considered by
using a simple two-dimensional model for electron drift
waves
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Here, ρ2s is the ion-sound Larmor radius and V∗ = θV∗
is the electron diamagnetic drift velocity. Nonlinear
equation (1) is similar to the Hasegawa-Mima model
except the term V0 · ∇(eφ/Te) which is retained be-
cause the plasma density do not follow Boltzman dis-
tribution for large scale modes (similar situation oc-
curs in the sheared magnetic field for modes with kn→
0 at the rational surface). Coupled dynamics of large
scale flow and small scale turbulence are considered,
so that the electrostatic potential φ is a sum of fluc-
tuating φ and mean φ quantities, V0 = cb×∇φ/B0,
VE = cb ×∇φ/B0. The mean potential is the aver-
age of the total potential over fast, small scale vari-
ables and depends only on slow variables X and T , φ
= φ(X, T ). The evolution equation for the mean flow
is

∂

∂T
∇2⊥φ = −

c

B0
φ,∇2⊥φ , (2)

which shows that the large scale flow is driven by small
scale fluctuations via Reynolds stress forces. Here,
{a, b} = ∂ra∂θb− ∂θa∂rb is the Poisson bracket.
Coupling of small scale fluctuations to the mean

flow is described by the kinetic equation for wave pack-
ets



∂Nk
∂T

+
∂ωk
∂k

· ∂Nk
∂X
− ∂ωk

∂X
· ∂Nk
∂k

= S, (3)

where Nk = Nk(X, T ) is the adiabatic action invari-
ant, and the exact form of Nk is model dependent.
For the model given by Eq. (1), the wave frequency is
ωk = kθV0 + ωlk, where ω

l
k = kθV∗/(1 + k2⊥ρ

2) is the
local wave frequency, and the mean flow V0 enters the
total frequency ωk as a simple Doppler shift.
The source term in (3) describes the wave growth

and damping due to linear and nonlinear mechanisms.
We assume that small scale turbulence is close to a
stationary state, so that S → 0.
Coupled equations (2,3) can be solved to show that

the modulations of the wave packets and zonal flow
V0 are unstable [2]. We consider equations (2),(3) lin-
earized for small perturbations (Nk,φ) ∼ exp(−iΩT +
iqr),where q ≡ qr = −i∂/∂r is the radial wave vector
of the large scale perturbation. Then, Eq. (2) takes
the form
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The modulation of Nk is calculated from (3)
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where Vg = ∂ω/∂kr. Using (5) in (4), we obtain the
following equation [2]
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The resonant type instability is obtained from (5)
by using the resonant function R = i/(Ω − qVg) →
πδ(Ω−qVg) or its broadened counterpart i/(Ω−qVg+
∆ωk) (for a white noise source, this can be taken as
1/∆ωk, where ∆ωk is nonlinear broadening due to the
wave-wave interaction). For the case of the narrow res-
onant function approximated by a delta-function, the
growth rate of the resonant instability is
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k2θρ
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(7)
The condition ∂N0

k/∂kr < 0 is required for instability.
When the growth rate of the instability becomes

large compared to the characteristic frequency spread
for the background fluctuations, individual Nk com-
ponents contribute to the instability coherently. In-
sight into this mechanism can be provided by a sim-
ple case of a monochromatic wave packet with N0

k =
N0δ(k − k0), with k0 = (kr0, kθ0). In this case after
some transformations we obtain [18]
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Note that the criterion for the instability is thus
N0
k (2kθV∗)

−1∂Vg/∂kr < 0. It can readily be seen that

the coherent (“hydrodynamic”) instability has a larger
growth rate compared to that of the resonant instabil-
ity (7). Resonant growth of large scale perturbations
can be described as negative viscosity instability [19].
In the “hydrodynamic” regime the instability if of the
reactive type due to the interaction of negative and
positive energy modes.

ROBUST FAST DYNAMO IN ALFVEN
TURBULENCE

Modulational instability of small scale electromag-
netic fluctuations may also lead to the generation of
large scale magnetic structures in a turbulent magne-
tized plasma [11-17]. The large scale magnetic field is
driven by the mean electromotive force term in Ohm’s
law, v×B.
As an example we consider a collisionless Alfven

wave turbulence in the presence of an ambient mag-
netic field B0 = B0z. A spontaneous excitation
of large scale magnetic fields B = ∇ψ × z, where
ψ = ψ(X), is a result of coupling of small scale tur-
bulence and the initial perturbation of the mean field.
Large scale random magnetic field refracts wave pack-
ets of the Alfven waves and, thus, modulates spec-
trum of the turbulence. Modulated spectrum reacts
back on the generated field via correlation between the
perturbed small scale components of electrostatic and
magnetic potentials. The latter provides electromotive
force in the mean Ohm’s law.
To consider the evolution of a large scale magnetic

field we consider a simple case of the mean Ohm’s law
with the main contribution v×B and neglecting other
terms which can be important, such as contrubutions
due to the electron pressure
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where Ry = φkikyψ−k , and Rx =

φkikxψ−k . It is obvious that a finite phase be-
tween φ and ψ is required for the generation of the
large scale magnetic field. At a linear stage such a
phase shift occurs due to mode grow/damping associ-
ated with dissipation effects. Our initial equations do
not contain such dissipation/wave particle interaction
effects. In two-fluid model dissipative effects will ap-
pear in the momentum balance equation as electron
viscosity and in the energy balance equation as a heat
flux. However, quasineutrality equation (or density
conservation equation) in general form remains correct
even in the presence of the dissipation. For illustration
purposes we consider Alfven waves neglecting all drift
effects. Therefore from the quasinetrality equations
we have

φk =
knc (ωk − iηk)

ωk2 + η2k

v2A
c2

ψk, (10)



where ωk is a real part of the wave frequency, and
ηk is the imaginary part of the mode frequency. In
the linear (transient) regime ηk is due to the mode
growth rate/damping while in the nonlinear steady-
state regime ηk is due to the nonlinear mode inter-
action and negative. As an estimate, eddy turn-over
time can be used for this parameter. More detailed
estimates can be done using various strong turbulence
closure schemes [20].
Then we have

Ry = φkikyψ−k =
knηkky
ωk2 + η2k

|ψk|2 , (11)

and similarly Rx can be calculated. The response of
|ψk|2 to the variations of the mean vector potential ψ
can be found by using the wave kinetic equation in the
form
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General solution of this equation can be wrrit-
ten as an integral along the characteristics Nk =
Nk(x,k, t) = N0

k (k0,x0) where x0= x0(k,x, t) and
k0 = k0(k,x, t) are inverse of the characteristics
x = x(x0,k0, t) and k = k(x0,k0, t) defined by the
equations
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In the linear approximation,k = k0 + δk,
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where δkn = −B−10 z ·∇ψ × k, and δω/δkn = knv2A/ω.
Then in the linear approximation
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Perturbations of the wave action density can be found
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Remarkable is that the instability occurs for arbi-
trary signs of ∂N0

k/∂ky and q that can be interpreted
as a robust alpha-effect. Further investigation is war-
ranted here to explore whether this type of dynamo
may by a subject of quenching due to the backreac-
tion of large scale magnetic field [21].
In the above analysis we have implicitly assumed

that the wave action invariant can be written Nk ∼
|ψk|2. In general, more exact expression is required
that will change the final expression for the growth
rate, though it does not affect the basic mechanism of
the instability.

LARGE SCALE TRANSPORT EVENT
INSTABILITY

Recently, detailed studies of the distrubution of
transport events in turbulent plasmas have shown that
relatively infrequent but large transport events may
provide a dominant contrubution to the overall plasma
transport [7,8]. Dynamical model of anomalous trans-
port due to weakly excited long wavelength modes,
“avalanches” or streamers, has been suggested in Ref.
22. Nonlinear instability leading to the formation of
strongly anisotropic, poloidally localized streamers has
been investigated in Refs. 7 and 9. Here we study the
large scale instability of plasma temperature profile as
a result of a positive feedback from background small
scale fluctuations. As an example of the generation
of large scale instabilities in the anomalous transport
we consider a model transport equation (temperature)
with a local diffusive operator

∂
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We assume that a local diffusion coefficient can
be written in the form D = D0 Nk, where Nk
is suitably normalized dimensionless action invari-
ant Nk ∼ e |φk|2 /T. We consider a stability of the
diffusion equation (18) with respect to global per-
turbations on a scale length comparable to the de-
vice scale and much larger than the turbulence cor-
relation length. Under this assumption the evolu-
tion of the background turbulent field can be mod-
eled by the wave kinetic equation (3). For sim-
plicity we consider a simple one dimensional case.
Then general solution of (3) can be written in the
form of the integral over trajectories Nk(k, x, t) =
N0
k (k0, x0) = N0

k (k0(k, x, t), x0(k, x, t), t) , where
k0(k, x, t) and x0(k, x, t) are inverse functions to k =
k(k0, x0, t) and x = x(k0, x0, t) which are solutions of
the ray equations (subscript x is omitted below)
To illustrate the instability we consider perturba-

tions δT and δNk. Then we have
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One can show that the effect of the variation of the
temperature under constant D can be neglected for
typical parameters.



The perturbation of the wave action can be found
as δNk = N0

k (k− δk)−N0
k (k) = −δk∂N0

k/δk where is
found from equations
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Then in the Fourier form we have
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q
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We obtain for the contribution of the individual wave
vector to the growth rate

Ω(Ω− qVg) = −q2D0 ∂ω
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Instability occurs for ∂ω/∂T T0∂N
0
k/∂kx > 0.

One can show that further evolution of the insta-
bility within Eqs (18) and (3) leads to the formation
of singularities [22].

SUMMARY

It is shown here that large scale structures such as
strongly sheared flow, magnetic islands and streamers,
as well as localized transport events may develop as a
result of secondary instabilities of the saturated drift
wave turbulence. The instabilities develop due to a
positive feedback on large scale formations from mod-
ulations of wave packets. We examined instability for
the basic drift waves as well as for the electromagnetic
fluctuations where generation of large scale magnetic
field is possible. We have also shown that anomalous
transport may be unstable leading to development of
global plasma profile perturbations that may be rele-
vant to large scale transport events, or avalanches.
Long wavelength structures, such as decsribed

above, appear to be a crucial element of the self-
organized drift wave turbulence due to a dominant role
of nonlocal interactions [23]. The large scale modes are
driven by the energy cascade from small scales, while
the spectrum of small scale drift wave fluctuations is
modified by the back reaction of large scales ( such as
random shearing [2]). It results in the coupled nonlin-
ear system for large and small scale components. Fixed
points of this system define saturated states of the
drift wave turbulence and respective transport coeffi-
cients. Transitions between different fixed states may
be related to sudden changes in transport (bursting
phenomena) frequently observed in gyrokinetic simu-
lations of tokamak transport [7].
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