КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ПИРОГРАФИТА И КАТАЛИТИЧЕСКИ ОСАЖДЕННОГО УГЛЕРОДА

В.А. Гурин, С.В. Габелков, Н.С. Полтавцев, И.В. Гурин, С.Г. Фурсов ННЦ «Харьковский физико-технический институт», г. Харьков, Украина

Методом рентгеноструктурного анализа исследованы кристаллическая структура и фазовый состав каталитически осажденного (600 и 800 °C) углерода из газовой фазы на металлическом никеле и пирографита, полученного при высокотемпературной обработке (3000...3070°C, 30 мин) углеродного материала ГП «Углекомпозит» (г. Запорожье). Пирографит имеет высокую степень совершенства кристаллической структуры: параметры решетки, близкие к цейлонскому графиту; d_{002} , равное (3,361±0,005) Å; степень графитации 1; размеры ОКР: L_c — не менее чем 5000 Å; L_a — (380±50) Å. Зерна пирографита преимущественно ориентированы перпендикулярно плоскости осаждения. Каталитически осажденный углерод состоит из графитовой фазы, аморфного углерода и металлического никеля. Графитовая фаза обладает средней степенью совершенства кристаллической структуры: d_{002} =(3,3986±0,0005) Å; степень графитации 0,48; размеры ОКР: L_c =140...180 Å; L_a =100...150 Å. Содержание аморфного углерода составляет до 30...42% от массы углеродных фаз

ВВЕДЕНИЕ

Применение высококачественных углеродных материалов необходимо для развития важнейших отраслей экономики Украины: электронной техники, атомной энергетики, цветной металлургии, химического машиностроения, техники высоких температур и др. [1].

Для практической реализации высокой тепло- и электропроводности углеродных материалов в технике принципиальное значение имеет их высокотемпературная обработка для проведения наиболее полной графитации. Хотя этой проблемой уже продолжительное время занимаются многие ученые, она требует дальнейшего развития и внимания специалистов [1, 2]. Важное практическое значение имеют исследования влияния на графитацию структурного состояния и методов получения исходных углеродных материалов. В последнее десятилетие бурно развиваются методы получения и исследования углеродных наноразмерных материалов, которые в ближайшее время могут найти новые, нетрадиционные применения, и поэтому привлекают к себе значительное внимание ученых и специалистов [3-5].

В данной работе исследованы кристаллическая структура и фазовый состав пирографита и каталитически осажденного углерода.

МЕТОДИКА И ТЕХНИКА ЭКСПЕРИМЕНТА

Образцы пирографита получали высокотемпературной обработкой в вакууме при температуре 3000...3070 °С с выдержкой 0,5 ч. В качестве исодного использовался углеродный материал ГП «Углекомпозит», г. Запорожье, прошедший термообработку при 2800 °С.

Каталитически осажденный углерод в виде порошка получен методом пиролиза природного газа при избыточном атмосферном давлении (~100 мм

водного столба) при температурах 600 и 800 °C. В качестве катализатора использовали никелевый порошок.

Углеродные материалы исследовали методом рентгеноструктурного анализа (дифрактометр ДРОН-1,5, излучение CuK_{α} , фильтр Ni). Съемку проводили по методу поликристалла (порошка). По дифрактограмме определяли углы и интенсивности рентгеновских линий; рассчитывали межплоскостные расстояния (d) по формуле:

$$d = \lambda / 2 \sin \theta, \tag{1}$$

где λ – длина волны излучения; θ – угол отражения.

Дифракционные данные графита (карточка №23-62 [6]) и никеля (карточка № 4-0850 [7, 8]) из картотеки ASTM использовали для идентификации фаз.

Степень графитации углеродных материалов рассчитывали по формуле:

$$\gamma = (c_M - c)/(c_M - c_m), \tag{2}$$

где c — период решетки исследуемого углеродного материала, с=2· d_{002} ; d_{002} — межплоскостное расстояние, соответствующее основной плоскости графита (002); c_M — период решетки слабо упорядоченного углеродного материала (6,88 Å); c_m — период решетки «цейлонского» графита (6,708 Å).

Размер D областей когерентного рассеяния (ОКР) рассчитывали по формуле Шеррера:

$$D=0.94 \ \lambda/\cos\theta \ (\beta-\beta_i), \tag{3}$$

где λ — длина волны излучения; β — уширение (ширина на полувысоте) рентгеновской линии; β_i — инструментальное уширение; θ — угол отражения.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Дифрактограмма образца исходного углеродного материала характеризуется рентгеновскими линиями графита от базовых плоскостей (002), (004), плоскости (105) и гало (рис. 1,а).

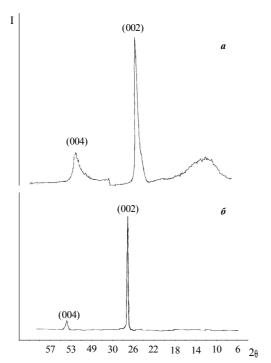


Рис. 1. Участки дифрактограмм: исходного углеродного материала (а) и пирографита после высокотемпературной обработки 3000 °С (б)

Дифракционные данные (углы (2θ) , соответствующие рентгеновским линиям, относительные интенсивности (I) линий, их уширения на полувысоте (ε), рассчитанные межплоскостные расстояния (d), индексы плоскостей кристаллической решетки ($h \ k \ l$), соответствующие рентгеновской линии, приведены в табл. 1.

Таблица 1 Дифракционные данные исходного углеродного материала ГП «Углекомпозит»

Номер образца	<i>20</i> , град	<i>I</i> , %	\mathcal{E} , град	d, Å	h k l	Примеча- ния
1	13,5	30	5,50	6,5537	ı	«Гало»
2	26	100	0,55	3,4243	002	«наплыв»
3	53,36	4	1,40	1,7156	0 0 4	«наплыв»
4	85	0,4	2,00	1,1402	105	-

Рентгеновские линии от базовых плоскостей графита (002) и (004) не симметричные, на каждой из них наблюдается «наплыв» со стороны меньших углов. Это указывает на наличие в материале менее плотных углеродных фаз. Интенсивность дифракционной линии от плоскости (004) составляет 4 вместо 80%, линии от плоскости (105) – 0,4 вместо 5% по сравнению с дифрактограммой изотропной кристаллической структуры графита [7]. Для их уверенной регистрации проводилась съемка в режиме экспериментально подбираемой чувствительности. Размер областей ОКР (L_c), рассчитанный по уширению основной линии (002), составляет (260 ± 25) Å; L_a , рассчитанный по уширению линии (105), равен (65 ± 8) Å. Кристаллическая структура материала не со-

вершенна: d_{002} =(3,4243±0,0005) Å; степень графитации 0,18; степень упорядочения по базовым плоскостям 5%; степень трехмерного упорядочения составляет не более 12 %. «Гало» на дифрактограмме в области углов 9...20° указывает на присутствие в материале до 24 % аморфного углерода.

Исходный углеродный материал представляет собой графит с несовершенной кристаллической структурой, содержащий 24 % неупорядоченного углерода.

Образец, прошедший высокотемпературную обработку при температуре 3000 °C, также исследовали методом рентгеноструктурного анализа. Съемку проводили с поверхности образца. Дифрактограмма изображена на рис. 1,б. Дифракционные данные приведены в табл. 2.

Таблица 2 Дифракционные данные пирографита после ВТО (3000°C)

Номер образ- ца	<i>20</i> , град	I, %	\mathcal{E} , град	d, Å	h k l	Приме- чания
1	14	1	5,5	6,3207	ı	«Гало»
2	26,55	100	0,22	3,3546	002	-
3	54,55	7	0,35	1,6809	0 0 4	-
4	87	0,4	0,60	1,1190	006	-
5	133,28	0,6	0,60	0,8391	008	-

Примечание. Съемка с плоскости образца.

Следует отметить, что в результате высокотемпературной термообработки у материала значительно (~10 раз) увеличилась отражающая способность улучей. Во время съемки пришлось понизить чувствительность. Основная линия от плоскости (002) сместилась в область больших углов, уменьшилось её уширение до инструментального, она является симметричной, отсутствует «наплыв» со стороны меньших углов. Параметр решетки c = 6.71 Å, определенный по основной линии (002), близок к цейлонскому графиту. Относительная интенсивность рентгеновской линии от плоскости (004) увеличилась до 7%. Это свидетельствует об упорядочении кристаллической структуры материала, развитии процесса графитации во время высокотемпературной обработки.

Для выявления других рентгеновских линий провели съемку в режиме экспериментально подбираемой чувствительности. Удалось зарегистрировать рентгеновские линии от плоскостей (006) и (008) (см. табл. 2, № 4 и 5). Степень упорядочения по плоскостям (006) и (008) составляет 6...10%. Однако не удалось зарегистрировать ни одной из неосновных линий. Материал имеет достаточно совершенную кристаллическую структуру: d_{002} = (3,361±0,005) Å; L_c увеличился не менее чем до 0,5 мкм; степень графитации возросла до 0,99. Определить L_a не представляется возможным из-за отсутствия неосновных линий на дифрактограмме. Небольшое «гало» на дифрактограмме в области углов 9...21°

указывает на присутствие в материале до 1 % аморфного углерода. В результате высокотемпературной обработки его содержание значительно уменьшилось.

Для выяснения возможной преимущественной ориентации зерен были проведена съемка торца образца, обработанного при высокой температуре также в режиме экспериментально подобранной чувствительности в различных угловых диапазонах. Интенсивность основной линии (002) в 10 раз меньше, чем при съемке с поверхности образца. Отражений от плоскостей (004), (006) и (008) зарегистрировать не удалось. Это свидетельствует о преимущественной ориентации зерен материала перпендикулярно плоскости образца. Однако на дифрактограмме присутствуют неосновные линии (табл. 3, № 2-5). Это указывает на частичное (40...90%) трехмерное упорядочение материала.

Таблица 3 Дифракционные данные пирографита после BTO 3000 °C (торец)

Номер образца	<i>20</i> , град.	<i>I</i> , %	\mathcal{E} , град.	d, Å	h k l
1	26,6	100	0,30	3,3484	002
2	42,5	30	0,45	2,1253	100
3	44,5	21	0,60	2,0343	101
4	77,5	49	0,42	1,2307	110
5	83,5	4	0,50	1,1568	112
6	93,95	18	0,55	1,0537	2 0 1
7	148,7	85	0,80	0,7999	2 1 1

По дифракционной линии (100) определен параметр решетки: a=2,46 Å (близок к литературным данным). Размер областей ОКР (L_a), рассчитанный по уширению основной линии (100), составляет 380 ± 50 Å.

Высокотемпературная обработка углеродного материала при температуре 3000 °C в течение 0,5 ч позволяет получить пирографит с параметрами решетки, близкими к цейлонскому графиту, увеличить степень графитации от 0,18 до практически равной 1, размеры ОКР: L_c – от (260 \pm 25) Å до не менее чем 5000 Å; L_a – от (65 \pm 8) Å до (380 \pm 50) Å; понизить содержание аморфного углерода от 24 до 1%. Однако высокотемпературная обработка при вышеприведенных параметрах не позволяет достичь полного трехмерного упорядочения материала и приводит к преимущественной ориентации зерен пирографита перпендикулярно плоскости образца.

Дифрактограмма каталитически осажденного при температуре 600 °С углерода характеризуется присутствием двух резко отличающихся групп рентгеновских линий (рис. 2, а). Линии графита имеют уширение (ширину на полувысоте), равное $1,15...1,6^{\circ}$, а линии никеля $0,55...0,9^{\circ}$. «Гало» в интервале углов $20 (15...25^{\circ})$ указывает на присутствие в образце аморфного углерода. Все рентгеновские ли-

нии симметричные. Дифракционные данные приведены в табл. 4.

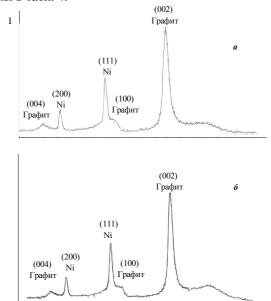


Рис. 2. Участки дифрактограмм каталитически осажденного углерода: a - 600; 6 - 800 °C

30 26

42

54

Таблица 4 Дифракционные данные каталитически осажденного углерода (600 °C)

22

Номер образца	<i>20</i> , град	I, %	ε , град	d, Å	h k l	Фаза
1	20	38	5,0	4,4360	-	аморфный углерод*
2	26,2	100	1,15	3,3986	002	графит
3	43	12	1,40	2,1018	100	графит
4	44,25	100	0,60	2,0453	111	никель
5	51,7	45	0,55	1,7667	200	никель
6	54,25	9	1,60	1,6895	004	графит
7	76,05	24	0,60	1,2505	110	никель
8	77,4	5	0,90	1,2320	110	графит
9	92,6	30	0,90	1,0655	222	никель
10	98	4	0,60	1,0207	201	никель

^{* «}Гало».

Основная рентгеновская линия графита от плоскости (002) имеет значительное уширение. Линия от плоскости (004) также значительно уширена (см. табл. 4, \mathbb{N}_{2} 6). С увеличением угла 2θ уширение линий увеличивается обратно пропорционально косинусу угла θ . Это свидетельствует о том, что уширение дифракционных линий вызвано малыми размерами ОКР (L_c) (140±30) Å. Относительная интенсивность линии от плоскости (004) составляет 9 вместо 80%, как у дифрактограммы кристаллической решетки графита [7]. Отражения от плоскостей (006) и (008) не зафиксированы. Степень упорядочения структуры по базовым плоскостям не превышает 11%. Присутствие на дифрактограмме рентгеновских линий от неосновных плоскостей решетки графита (см. табл. 4, № 3, 8) свидетельствует о трехмерном упорядочении структуры на 30...40%. Хотя рентгеновская линия от плоскости (100) частично накладывается на линию никеля, но её уширение не меньше, чем основной линии от плоскости (002). Это указывает на то, что размер ОКР (L_a) не может быть более 120...140 Å.

Графитовая фаза обладает не очень совершенной структурой: d_{002} =(3,3986±0,0005) Å; степень графитации 0,48; имеет малую степень упорядочения по базовым плоскостям и среднюю степень трехмерного упорядочения.

«Гало» на дифрактограмме в области углов 12... 24° указывает на присутствие в материале аморфного углерода. Его содержание составляет до 30%. Дифракционные линии никеля имеют уширения, равные инструментальному, их относительные интенсивности, положения на дифрактограмме (углы 2θ) соответствуют металлическому никелю с кубической структурой [8].

Дифрактограмма каталитически осажденного при температуре 800 °C углерода, так же как и при температуре 600°C, характеризуется присутствием двух резко отличающихся групп рентгеновских линий (см. рис. 2,б). Линии графита имеют немного меньшее уширение, равное $1,0...1,2^{\circ}$, а линии никеля — такое же $0,55...0,9^{\circ}$, как и на дифрактограмме каталитически осажденного при температуре 600 °C углерода. Также имеется «гало» в интервале углов 2 θ ($14...25^{\circ}$), но большей интенсивности. Все рентгеновские линии тоже симметричные. Дифракционные данные отображены в табл. 5.

Таблица 5 Дифракционные данные каталитически осажденного углерода (800 °C)

Номер образ- ца	<i>2θ</i> , град	I, %	ε , град	d, Å	h k l	Фаза
1	20	64	5,0	4,4360	_	аморфный углерод*
2	26,2	100	1,0	3,3986	002	графит
3	42,5	9	1,0	2,1253	100	графит
4	44,3	100	0,6	2,0431	111	никель
5	51,7	30	0,5	1,7667	200	никель
6	54,25	6	1,2	1,6895	004	графит
7	76,15	15	0,6	1,2491	110	никель
8	77,5	5	0,8	1,2307	110	графит
9	92,7	22	1,0	1,0646	222	никель
10	98	3	0,6	1,0207	201	никель

^{* «}Гало».

Основные рентгеновские линии графита от плоскостей (002) и (004) уширены, но меньше, чем на предыдущей дифрактограмме (см. табл. 4). Причина уширения — малые размеры ОКР — (L_c) (180 \pm 40)Å. Относительная интенсивность линии от плоскости (004) составляет 10 вместо 80%. Отражения от плоскостей (006) и (008) также отсутствуют. Степень упорядочения структуры по базовым плоскостям не

превышает 10%. Присутствие на дифрактограмме рентгеновских линий от неосновных плоскостей решетки графита (см. табл. 5, № 3 и 8) свидетельствует о такой же степени (30...40%) трехмерного упорядочении структуры. Размер ОКР (L_a) не более 120...150 Å.

Степень совершенства графитовой фазы практически такая же, как и при осаждении при температуре 600° C: с точностью измерения d_{002} ; степень графитации, степень упорядочения по базовым плоскостям и степень трехмерного упорядочения совпадают

«Гало» в области углов 12...24° имеет большую интенсивность. Это указывает на то, что в результате каталитического осаждения при температуре 800° С содержание аморфного углерода увеличилось до 42%. Дифракционные линии никеля так же, как и на дифрактограмме каталитически осажденного при 600°С углерода, соответствуют металлическому никелю с кубической структурой.

Следует отметить, что с увеличением температуры получения каталитических осадков от 600 до 800 °C увеличивается размер ОКР графита от 140 до 180 Å и возрастает содержание неупорядоченного углерода. Коэффициент графитации, степень трехмерного упорядочения решетки и упорядочения по основным плоскостям не меняются.

Рассмотрим совершенство кристаллической структуры углеродного материала ГП «Углекомпозит» и каталитически осажденного углерода. Хотя каталитически осажденный углерод получен при температурах более низких, чем углеродный материал, он имеет более совершенную кристаллическую решетку: большую степень графитации 0,48 (против 0,18 у углеродного материала), степень упорядочения основных плоскостей 10% (против 5%) и степень трехмерного упорядочения 30...40% (против 12%). Но содержание аморфного углерода 30... 42% у каталитически осажденного углерода существенно больше, чем у углеродного материала (24%). Размеры ОКР (L_c =140...180 Å) у каталитически осажденного углерода меньше, чем у углеродного материала (L_c =(260±25) Å), а размеры ОКР $(L_a=100...1500 \text{ Å})$ больше, чем у углеродного материала ($L_a = (65\pm 8 \text{ Å})$).

ВЫВОДЫ

Методом рентгеноструктурного анализа исследованы особенности кристаллической структуры и фазового состава каталитически осажденного на никеле углерода и пирографита, полученного при высокотемпературной обработке (3000...3070 °C, 0,5 ч) углеродного материала ГП «Углекомпозит» (г. Запорожье).

Высокотемпературная обработка углеродного материала позволяет получить пирографит с высокой степенью совершенства кристаллической структуры: параметры решетки, близкие к цейлонскому графиту; межплоскостное расстояние d_{002} , равное $(3,361\pm0,005)$ Å; степень графитации 1; размеры

ОКР: L_c не менее чем 5000 Å; L_a — (380 \pm 50) Å. Однако высокотемпературная обработка при этих параметрах не позволяет достичь полного трехмерного упорядочения материала и приводит к преимущественной ориентации зерен пирографита перпендикулярно плоскости образца.

При газофазном осаждении в присутствии катализатора, порошка никеля, получен каталитически осажденный углерод, состоящий из графитовой фазы, аморфного углерода и металлического никеля. Графитовая фаза имеет среднюю степень совершенства кристаллической структуры: d_{002} =(3,3986±0,0005) Å, степень графитации 0,48; степень упорядочения по базовым плоскостям 6...10% и степень трехмерного упорядочения 30...40%. Содержание аморфного углерода составляет до 30...42% от массы углеродных фаз.

Показано, каталитически осажденный на никеле углерод, полученный при газофазном осаждении при температурах 600...800 °C, имеет более совершенную кристаллическую решетку, чем углеродный материал ГП «Углекомпозит» (г. Запорожье), полученный при высокотемпературной обработке 2800° С: большую степень графитации 0,48 (против 0,18 у углеродного материала); степень упорядочения основных плоскостей 10 против 5% и степень трехмерного упорядочения 30...40 против 12%. Хотя каталитически осажденный углерод получен при температурах более низких, чем углеродный материал Запорожского предприятия, но содержание аморфного углерода (30...42%) в нем существенно больше, чем у углеродного материала (24 %). Размеры областей когерентного рассеяния (L_c=140...180 Å) у каталитически осажденного углерода меньше, чем у углеродного материала (L_c =(260±25) Å), а размеры ОКР (L_a =100..150 Å) больше, чем у углеродного материала (L_a =(65±8) Å).

Работа выполнена при финансовой поддержке НТЦУ, проект № 1870.

ЛИТЕРАТУРА

- 1.В.П. Соседов, Е.Ф. Чалых. *Графитация углеродных материалов*. М.: «Металлургия», 1987, 176 с.
- 2.Е.Ф. Чалых. *Технология и оборудование электродных и электроугольных предприятий*. М.: «Металлургия», 1983, 432 с.
- 3.П.М. Силенко, А.Н. Шлапак, С.Н. Каверина и др. Получение углеродных наноструктур путем каталитического пиролиза толуола //VIII Междунар. конф. «Водородное материаловедение и химия углеродных нанометериалов». Судак, Крым, 14-20 сент. 2003, с. 416 417.
- 4.Ю.И. Семенов, Г.П. Приходько, С.Л. Рево. Синтез и структурные особенности терморасширенного графита, модифицированного углеродными наноструктурами //VIII Междунар. конф. «Водородное материаловедение и химия углеродных наноматериалов», Судак, Крым, 14-20 сент. 2003. С. 488 489.
- 5.А.А. Золотухин, А.Н. Образцов, А.П. Волков, А.О. Устинов. Тонкопленочные наноуглеородные материалы: синтез и свойства //VIII Междунар. конф. «Водородное материаловедение и химия углеродных наноматериалов», Судак, Крым, 14-20 сент. 2003. С. 472 473.
- 6. Swanson and Tatge //JC Fel. Reports. NRS, 1951.
- 7.Л.И. Миркин. Справочник по рентгеноструктурному анализу поликристаллов /Под ред. проф. Я.С. Уманского М.: Гос. изд. ф.-м. лит., 1961, 865 с.
- 8.Ferguson, Berry and Thompson //Geol. Soc. Amer. Mem. 1962, v.85, p. 23.

КРИСТАЛІЧНА СТРУКТУРА ПІРОГРАФІТУ ТА КАТАЛІТИЧНО ОСАДЖЕНОГО ВУГЛЕЦЮ

В.А. Гурін, С.В. Габслков, М.С. Полтавцев, І.В. Гурін, С.Г. Фурсов

Методом рентгеноструктурного аналізу досліджені кристалічна структура та фазовий склад каталітично осадженого (600 і 800 °C) вуглецю з газової фази на металевому нікелі та пірографіту, отриманного при високотемпературній обробці (3000...3070°C, 30 хв) вуглецевого матеріалу ДП «Вуглекомпозит» (м. Запоріжжя). Пірографіт має високий ступінь досконалості кристалічної структури: параметри решітки, близькі до цейлонського графіту; d_{002} , що дорівнює (3,361±0,005)Å; ступінь графітаціїї 1, розміри ОКР: L_c – не менш чим 5000 Å, L_a – (380±50) Å. Зерна пірографіту переважно орієнтовані перпендикулярно площини осадження. Каталітично осаджений вуглець складається з графітової фази, аморфного вуглецю та металевого нікелю. Графітова фаза має середній ступінь досконалості кристалічної структури: d_{002} =(3,3986±0,0005) Å, ступінь графітації 0,48; розміри ОКР: L_c =140...180 Å, L_a =100...150 Å. Вміст аморфного вуглецю складає до 30...42 % від маси вуглецевих фаз.

CRYSTAL STRUCTURE OF PYROGRAPHITE AND CATALYTICALLY DEPOSITED CARBON

V.A. Gurin, S.V. Gabelkov, N.S. Poltavtsev, I.V. Gurin, S.G. Phursov

By the method of X-ray structure analysis there were investigated crystal structure and phase content of catalytically deposited on the metal nickel from the gas phase (600°C and 800 °C) carbon and pyrographite produced by high temperature treatment (3000...3070 °C, 30 minutes) of the carbon material of the SP "Uglecomposit". Pyrographite has high rate of crystal structure perfection, parameters of the area of the coherent scattering that are close to the Ceylon graphite; d_{002} equal to (3,361±0,005) Å, graphitizing rate – 1; dimensions of the crystal grating : L_c not less 5000 Å, L_a – (380±50) Å. Pyrographite grains are mostly ori-

ented in perpendicular to the deposition plane. Catalytically deposited carbon consists of the graphite phase, amorphous carbon and metallic nickel. Graphite phase has a middle rate of crystal structure perfection: d_{002} = (3,3986±0,0005) Å, graphitizing rate 0.48, area of the coherent scattering: L_c =140180 Å, L_a =100150 Å. The amorphous carbon content is up to 3042 % from the carbon phases mass.