## ЭЛЕКТРОННО-ЛУЧЕВАЯ ПЛАВКА ТИТАНА, ЦИРКОНИЯ И ГАФНИЯ

В.М.Ажажа, П.Н.Вьюгов, С.Д.Лавриненко, Н.Н.Пилипенко, А.Ф.Болков\*, А.М.Лахов\*, К.А.Линдт\*, А.П.Мухачев\*, В.И.Попов\*

Национальный научный центр «Харьковский физико-технический институт» 61108, г. Харьков, ул. Академиченская, 1. Украина факс: (0572)35-17-39, e-mail: azhazha@kipt.kharkov.ua, \*ГНПП «Цирконий», 51917, г. Днепродзержинск, пр. Аношкина, 179. Украина тел. (05692) 3-00-92

Викладено експериментальні результати досліджень процесів рафінування титану, цирконію і гафнію методом електронно-променевої плавки з застосуванням високовакуумної техніки. Показано, що даний метод є високоефективним для зниження вмісту металевих домішок. Використання алюмінію в якості компонента, що розкислює, приводить до істотного зниження вмісту кисню в цирконії та гафнії.

Изложены экспериментальные результаты исследований процессов рафинирования титана, циркония и гафния методом электронно-лучевой плавки с применением высоковакуумной техники. Показано, что данный метод является высокоэффективным для снижения содержания металлических примесей. Использование алюминия в качестве раскисляющего компонента приводит к существенному снижению содержания кислорода в цирконии и гафнии.

The experimental results of researching of processes of refining of titanium, zirconium and hafnium by method of electronbeam melting with applying of high-vacuum engineering are present. That method is high-performance for decrease of the contents of metal impurity. Usage of aluminum as a deoxidating component results in an essential decrease of the contents of oxygen in zirconium and hafnium.

Металлы IVA группы периодической системы Д.И. Менделеева - титан, цирконий и гафний - составляют замечательную тройку химически активных металлов. Их промышленное применение связано с развитием новых технологий: химической и аэрокосмической промышленности, атомной энергетики и др. Химические свойства их близки, что вызывает определенную трудность при разделении друг от друга, но их применение принципиально различное из-за особенностей физических свойств. Титан – легкий металл с плотностью 4,5 г/см<sup>3</sup>. Сплавы титана имеют малый удельный вес, что в сочетании с высокими прочностными свойствами делает их незаменимыми в аэрокосмической технике. Цирконий, имея малое поперечное сечение захвата тепловых нейтронов, сравнительно высокую температуру плавления, высокую радиационную и коррозионную стойкость является одним из основных металлов, применяемых в качестве компонентов сплавов для тепловыделяющих элементов ядерных реакторов. Гафний имеет очень большое поперечное сечение поглощения нейтронов, и в последнее время он применяется для регулирующих стержней и стержней аварийной защиты ядерных реакторов.

Все три металла имеют превосходную коррозионную стойкость в широком спектре агрессивных сред. Их коррозионная стойкость значительно выше, чем у нержавеющих сталей и близка к танталу. Поэтому все три металла успешно применяются в химическом машиностроении: морская вода и сильные окисляющие среды для титана, сильно раскисляющие среды для циркония и гафния. Кроме того, все эти металлы широко применяются как легирующие элементы при производстве жаропрочных сплавов специального назначения.

В настоящее время в Украине выпускается титановая губка высокого качества, получаемая восстановлением тетрахлорида титана магнием. Цирконий и гафний получают кальциетермическим восстановлением их тетрафторидов. После восстановления технические металлы содержат значительное количество примесей и нуждаются в дополнительном рафинировании. Набольшие трудности при рафинировании представляет очистка от примесей внедрения - кислорода, азота и углерода. При промышленном производстве титана, циркония и гафния и их сплавов для получения компактных слитков и рафинирования применяются вакуумно-дуговой (ВДП) и электронно-лучевой (ЭЛП) переплавы. Результаты рафинирования титана, циркония и гафния, представленные в табл.1 [1], показывают, что применение электронно-лучевой плавки для рафинирования этих металлов является более эффективным, чем использование других методов, например, дугового переплава.

В настоящей работе изучены процессы рафинирования титана, циркония и гафния от металлических и газообразующих примесей, в частности, от

кислорода при их рафинировании методом электронно-лучевой плавки.

При электронно-лучевой плавке над поверхностью расплавленного металла вследствие наличия градиентов температуры, концентрации и давления возникает поток паров металла и газов. При определенных условиях направление потока будет либо к поверхности расплава, либо от нее. В условиях вакуумной плавки поток вещества испытывает взаимодействие с остаточными газами вакуумной среды, что приводит к образованию газопаровой фазы над поверхностью жидкого металла.

Таблица 1 Содержание газовых примесей в титане, цирконии и гафнии после ВДП и ЭЛП [1]

| Металл  | Способ<br>плавки | Содержание примеси,<br>мас.% |         |        |
|---------|------------------|------------------------------|---------|--------|
|         |                  | Кислрод                      | Водород | Азот   |
| Титан   | ВДП              | 0,068                        | 0,0015  | 0,0177 |
|         | ЭЛП              | 0,066                        | 0,0006  | 0,0066 |
| Циркний | ВДП              | 0,025                        | 0,0010  | 0,0100 |
|         | ЭЛП              | 0,016                        | 0,0004  | 0,0060 |
| Гафний  | ВДП              | 0,044                        | 0,0175  | 0,0080 |
|         | ЭЛП              | 0,014                        | 0,0013  | 0,0020 |

При испарении металла и взаимодействии поверхности расплава с остаточными газами большую роль играют процессы столкновения. Характеризует этот процесс длина свободного пробега  $\lambda$ . Когда она равна радиусу поверхности расплава, тогда существует область, ограниченная некоторой поверхностью, где атомы металла претерпевают большое число столкновений. Эта поверхность, во-первых, играет роль источника пара вместо поверхности расплава, во-вторых, служит защитным экраном поверхности расплава от непосредственного взаимодействия с остаточной атмосферой вакуумной камеры.

Длина свободного пробега атомов металла при температуре плавления зависит от многих факторов и может быть рассчитана по формуле [2]:

$$\lambda = \frac{kT}{4\sqrt{2\pi}pr^2} = 5.8 \times 10^{-21} \left(\frac{T}{r^2p}\right),$$

где T — температура; p — давление пара металла; r - молекулярный радиус,  $r=1,33\cdot 10^{-8}(M/\rho)^{1/3},$  где M - атомная масса,  $\rho$  - плотность металла.

Расчетные величины длины свободного пробега  $(\lambda)$ , а также значения упругости пара  $(p_{пар})$  при температуре плавления  $(T_{пл})$  и скорости испарения для металлов IVA группы приведены в табл.2 и на рис.1.

Из табл.2 видно, что величины длин свободного пробега для паров металлов при их температурах плавления очень отличаются. Оценка величины давления пара металла, при котором на расстоянии от поверхности расплава a=20 мм образуется "защитный" слой, показала, что необходимо, чтобы атомы паров металла претерпели хотя бы одно столкновение, т.е.  $\lambda/a < 1$ . Изменение длины свободного пробега атомов металлов в зависимости от давления пара, взятое из табл.2, представлено на рис.2, откуда

следует, что величина давления пара при котором  $\lambda$  /a < 1 должна быть больше  $10^{-2}$  мм рт.ст.

Реальные температуры поверхности расплава металла при электронно-лучевой плавке зависят от многих факторов (вид металла, мощность, диаметр кристаллизатора, угол падения электронного пучка и др.) и могут значительно превышать температуру плавления. В табл.3 приведены максимальные значения температуры поверхности расплава при электронно-лучевой плавке, там же приведено равновесное давление пара для этой температуры [3]. Из табл.2 следует, что значения давлений паров металлов во время электронно-лучевой плавки таковы (больше  $10^{-2}$  мм рт.ст.), что образуется защитный слой.

Таблица 2 Величины длин свободного пробега, упругостей паров и температур плавления металлов IVA группы

| Me-  | Тпл., | р <sub>пар</sub> ,   | λ,   | р <sub>пар</sub> =10 <sup>-2</sup> мм |  |  |  |
|------|-------|----------------------|------|---------------------------------------|--|--|--|
| талл | К     | мм рт.ст.            | СМ   | рт.ст. при Т, К                       |  |  |  |
| Ti   | 1940  | $3,7\cdot10^{-3}$    | 3,6  | 2010                                  |  |  |  |
| Zr   | 2125  | 1,4·10 <sup>-5</sup> | 857  | 2670                                  |  |  |  |
| Hf   | 2495  | 1,0.10-3             | 14,4 | 2670                                  |  |  |  |

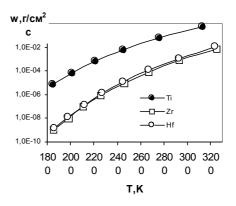



Рис.1. Изменение скорости испарения титана, циркония и гафния в зависимости от температуры

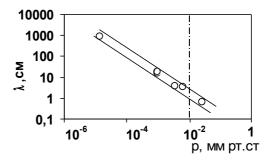



Рис.2. Изменение длины свободного пробега в зависимости от давления пара

Образование защитного слоя приводит к следующим возможностям взаимодействия поверхности расплава металла, паров металла и остаточных газов вакуумной камеры:

давление активных газов в камере больше равновесного давления этих же газов у поверхности расплава, тогда защитный слой будет играть роль защиты поверхности металла от загрязнения остаточными газами;

давление активных газов в камере меньше равновесного давления этих же газов у поверхности расплава, тогда защитный слой служит препятствием для прохождения процесса обезгаживания металла.

Таблица 3 Максимальное значение температуры поверхности расплава при ЭЛП металлов и равновесное давление паров при этой температуре [3]

| Металл  | Температура расплава, К | Давление пара,<br>мм рт.ст. |
|---------|-------------------------|-----------------------------|
| Титан   | 2200                    | 8,5·10-2                    |
| Циркний | 2900                    | 8,5·10-2                    |
| Гафний  | 3100                    | 8,0.10-2                    |

Плотность парового облака над жидким металлом в процессе электронно-лучевой плавки также играет существенную роль в защите металла от проникновения на ее поверхность газовых примесей. Величина плотности парового облака зависит от удельной мощности электронного нагрева. Зависимость скорости испарения некоторых металлов при электронно-лучевом нагреве от диаметра фокального пятна представлена на рис.3 [4]. Увеличение удельной мощности (уменьшение диаметра фокального пятна) увеличивает скорость испарения и усиливает защитный эффект парового облака, при этом уменьшается выход годного металла в слиток.

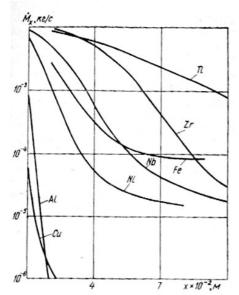



Рис.3. Зависимость скорости испарения некоторых металлов при электронно-лучевом нагреве от диаметра фокального пятна [4]

Ниже приведены результаты экспериментальных исследований рафинирования титана, циркония и гафния методом электронно-лучевой плавки на

сверхвысоковакуумной установке с безмасляной системой откачки [5].

Титан. При исследовании процесса очистки титана методом электронно-лучевой плавки в качестве исходных материалов использовались губка ТГ-90 и йодидный титан [6]. Плавки губчатого титана осуществлялась в два этапа. На первом этапе в кристаллизатор печи ЭЛП засыпались кусочки губчатого титана, которые затем спекались и оплавлялись. В процессе спекания и оплавления интенсивно удалялись газы из металла. Содержание газовых примесей в губчатом металле было настолько большим, что наблюдалась "пузырьковая" стадия выделения газов. Дальнейшая плавка проходила классическим капельным методом с вытягиванием слитка. После проведения ЭЛП получены слитки титана чистотой > 99.99 мас.%. Содержание примесей в йодидном металле после двух электронно-лучевых переплавов приведено ниже:

 $\begin{array}{l} Al - 8.0 \cdot 10^{-5}; \ P - 1.0 \cdot 10^{-5}; \ S - 8.0 \cdot 10^{-5}; \ K - 6.0 \cdot 10^{-5}; \\ Ca - 2.0 \cdot 10^{-4}; \ V - 3.0 \cdot 10^{-4}; \ Cr - 3.0 \cdot 10^{-4}; \ Mn < 9.0 \cdot 10^{-5}; \\ Fe - 1.5 \cdot 10^{-3}; \ Ni - 5.0 \cdot 10^{-3}; \ Cu - 3.0 \cdot 10^{-4}; \ Zn - 2.0 \cdot 10^{-4}; \\ As - 8.0 \cdot 10^{-5}; \ Sn < 8.0 \cdot 10^{-4} \ \text{mac.\%}. \end{array}$ 

Следует отметить, что ЭЛП титана повышенной степени чистоты благоприятно сказывается на вакуумных условиях установки из-за хороших геттерных способностей слоев титана, осажденных на стенки камеры за счет испарения при ЭЛП.

*Пирконий*. Исходными материалами при рафинировании циркония и гафния методом ЭЛП использовались металлы, полученные методом кальциетермического восстановления их тетрафторидов: кальциетермический цирконий (КТЦ) и кальциетермический гафний (КТГ), а также йодидный цирконий [6-8]. Исследования показали, что ЭЛП является весьма эффективным рафинирующим процессом для циркония. Содержание металлических примесей в кальциетермическом цирконии после электроннолучевой плавки и изменение содержания примесей в йодидном цирконии в процессе ЭЛП приведено в табл.4. Содержание примесей внедрения в КТЦ изменяется с 0,18 мас.% до 0,10...0,12 мас.% после первого ЭЛП и 0,05...0,1 мас.% после второго ЭЛП. Микротвердость исходного иодидного циркония составляла 1200 МПа, а после ЭЛП снизилась до 800 МПа. В случае кальциетермического циркония твердость по Бринелю снижается с 2250 МПа до 1750 и 1370 МПа у металла после первого и второго электронно-лучевого переплава соответственно. Двойной переплав иодидного циркония в установке с безмасляной системой откачки позволил получить слиток циркония с твердостью 639 МПа.

Гафний. Проведенные эксперименты по рафинированию кальциетермического гафния методом ЭЛП показали, что при увеличении удельной мощности плавки не только ускоряется процесс рафинирования гафния от металлических примесей, но происходит и рафинирование от кислорода за счет его удаления в виде монооксида металла HfO.

Проведение расчетов времени выдержки расплава гафния при ЭЛП, необходимого для снижения концентрации металлических примесей до заданной

величины, показали, что в процессе электронно-лучевой плавки может быть затруднительна очистка гафния от кремния, а очистка от более летучих примесей уменьшается в ряду Zn>Be>Mn>Cr>Cu>Al>>Fe>V>Co>Ni>Si. Полученные параметры были использованы для оптимизации электронно-лучевой плавки гафния [9].

Таблица 4 Содержание примесей в цирконии после ЭЛП

|         | Содержание примесей в цирконии, $10^3$ , мас.% |           |           |  |  |
|---------|------------------------------------------------|-----------|-----------|--|--|
| Примесь | йодид                                          | КТЦ       |           |  |  |
|         | исходный                                       | после ЭЛП | после ЭЛП |  |  |
| Cu      | 4                                              | 0,1       | 0,4       |  |  |
| Fe      | 9                                              | 0,8       | 0,5       |  |  |
| Al      | 4                                              | 0,8       | 0,5       |  |  |
| Ni      | 40                                             | 0,6       | 3,5       |  |  |
| Mg      | 0,4                                            | 0,3       | -         |  |  |
| Mn      | 1,5                                            | 0,1       | -         |  |  |
| Cr      | 1,3                                            | 0,2       | 0,9       |  |  |
| Si      | 18                                             | 4,5       | -         |  |  |
| Ti      | 2                                              | 0,4       | -         |  |  |

После двух последовательных лабораторных электронно-лучевых плавок, проведенных в ННЦ ХФТИ, из иодидного металла был получен гафний чистотой  $\geq 99.9$  мас.%, его химический состав следующий (в мас.%): азот  $-1.0\cdot10^{-3}$ ; алюминий  $-1.0\cdot10^{-3}$ ; вольфрам  $<1.0\cdot10^{-3}$ ; железо  $-5.0\cdot10^{-3}$ ; кислород  $-1.0\cdot10^{-2}$ ; кремний  $-3.5\cdot10^{-3}$ ; марганец  $<1.0\cdot10^{-3}$ ; медь  $-2.0\cdot10^{-4}$ ; никель  $<1.0\cdot10^{-3}$ ; ниобий  $<2.0\cdot10^{-3}$ ; углерод  $-5.0\cdot10^{-3}$ ; фтор  $<1.0\cdot10^{-3}$ ; хром  $-2.0\cdot10^{-4}$ .

Удаление кислорода. Известно, что кислород существенным образом влияет на реакторные свойства изделий из циркония и гафния. Удалить его из этих металлов очень трудно. Цирконий и гафний образуют с кислородом прочные соединения, поэтому снижение содержания этой примеси в них по основным механизмам удаления двухатомных газов во время электронно-лучевой плавки практически невозможно. Оксид ZrO<sub>2</sub> не диссоциирует при условиях плавки и имеет низкую упругость пара, поэтому через этот оксид кислород удаляться не может. Однако рафинирование металла, находящегося в жидкой фазе, от кислорода может происходить за счет испарения его субоксидов и оксидов. Этот процесс имеет место тогда, когда давление пара монооксида больше давления пара основного металла [10]. Для циркония  $ZrO/Zr = 10^2$ , для гафния  $HfO/Hf = 10^4$  и раскисление по этому механизму возможно, а для титана TiO/Ti = 1 и кислород не удаляется. Но удаление кислорода по этому механизму требует значительного перегрева переплавляемого металла, а следовательно, больших потерь основного металла, что не допустимо в промышленности. Поэтому, для эффективного удаления кислорода из циркония и гафния необходимо вводить третий компонент, который образовывал бы с кислородом соединение, имеющее более высокую упругость пара оксида, чем у оксида основного металла. Тем более кальциетермический процесс получения циркония и гафния позволяет вводить третий компонент на стадии получения чернового металла без усложнения технологического процесса.

В качестве раскислителя циркония и гафния был выбран алюминий, и проведена оценка направления прохождения реакции между кислородом и алюминием в гафнии и цирконии [9, 11-14]. Из термодинамических расчетов следует, что реакция должна проходить в сторону их раскисления. При этом происходит испарение соединения вводимой примеси с кислородом, имеющего большую упругость пара, чем у металла-основы. Расчеты показали, что для образования летучего оксида Al<sub>2</sub>O при дальнейшей плавке в исходный слиток металла (циркония или гафния) с содержанием кислорода 0,2...0,5 мас.% необходимо вводить 0,7...1,0 мас.% алюминия.

Проведенные экспериментальные исследования по повышению чистоты кальциетермического гафния и циркония от кислорода показали, что введение алюминия в качестве раскисляющего компонента на стадии восстановления металлов приводит к снижению содержания кислорода в цирконии и гафнии на стадии электронно-лучевой плавки. Добавка алюминия в исходный цирконий и гафний в количестве трех стехиометрий состава Al<sub>2</sub>O понижает содержание кислорода в металле после ЭЛП до 0,03...0,004 мас.%, содержание алюминия при этом не превышает (2...3)·10<sup>-3</sup> мас.%. Содержание других металлических примесей удовлетворяет техническим требованиям на эти металлы.

Результаты лабораторных исследований позволили определить необходимые параметры для проведения опытно-промышленных электронно-лучевых плавок гафния. В заводских условиях на ГНПП «Цирконий» из сплавов кальциетермического гафния с алюминием после ЭЛП был получен гафний чистотой более 99,94 мас.% с содержанием примесей: азот  $-3,0\cdot10^{-3}$ ; алюминий  $-3,0\cdot10^{-3}$ ; вольфрам  $-1,0\cdot10^{-3}$ ; железо  $-3,0\cdot10^{-3}$ ; кислород  $-4,0\cdot10^{-2}$ ; кремний  $-3\cdot10^{-3}$ ; марганец  $-3,0\cdot10^{-4}$ ; медь  $-2,0\cdot10^{-3}$ ; никель  $-3,0\cdot10^{-3}$ ; ниобий  $-2,0\cdot10^{-3}$ ; углерод  $-3,0\cdot10^{-3}$ ; хром  $-1,0\cdot10^{-3}$  мас.% [14]. Данный металл по содержанию примесей не уступает иодидному гафнию и может успешно применяться в качестве конструкционного материала горячей зоны ядерных реакторов.

Исследования образцов, представленных на постоянно действующую Выставку - коллекцию веществ особой чистоты (Институт химии высокочистых веществ РАН) показали, что решающий вклад в величину суммарного содержания примесей вносят газообразующие элементы: среднее их содержание в образцах металлов находится на уровне 10-4 ат.%; значителен также и вклад распространенных элементов и элементов-аналогов ~ 10-5 ат.%. Суммарное содержание примесей в наиболее чистых образцах высокочистого титана, циркония и гафния, представленных на Выставку-коллекцию, составляет 6·10-3 (число проконтролированных примесей 54),  $5 \cdot 10^{-3}$  (62) и  $5 \cdot 10^{-2}$  ат.% (50) соответственно [15]. Следовательно, дальнейшее повышение чистоты этих металлов может быть достигнуто за счет удаления основных газообразующих примесей и примесей элементов-аналогов.

Представленные в настоящей работе результаты исследований по рафинированию металлов IVA группы методом электронно-лучевой плавки показали, что данный метод является высокоэффективным для снижения содержания металлических и газовых примесей. Использование алюминия в качестве раскисляющего компонента на стадиях восстановительных плавок циркония и гафния приводит к существенному снижению содержания кислорода в металлах (до 0,03...0,004 мас.%) на стадии электроннолучевой плавки.

## ЛИТЕРАТУРА

- 1. 3.Шиллер, У.Гайзиг, З.Панцер. Электронно-лучевая технология. М.: «Энергия», 1980, 528 с.
- 2. Е.Фромм, Е.Гебхардт. *Газы и углерод в металлах*. М.: "Металлургия", 1980, 711 с.
- 3. В.А.Елютин, Л.И.Вороненко, Е.В.Тимофеев. Исследование закономерностей вакуумного электронно-лучевого рафинирования тугоплавких металлов от металлических примесей //Вопросы атомной науки и техники. Серия: Общая и ядерная физика. 1983, вып.1(2), с.15-22.
- 4. С.В.Ладохин, Ю.В.Конюшин. Электроннолучевая гарнисажная плавка металлов и сплавов. Киев: «Наукова Думка», 1988, 144 с.
- 5. В.М.Ажажа, П.Н.Вьюгов, В.С.Гуменюк, С.Д.Лавриненко. Улучшение вакуумных условий установки электронно-лучевой плавки //Вопросы атомной науки и техники. Серия: «Физика и техника высокого вакуума». 1982, вып.3(21), с.9-12.
- 6. В.М.Ажажа, П.Н.Вьюгов, В.А.Еленский и др. Получение высокочистых металлов: титана, циркония, ванадия, ниобия и тантала //Вопросы атомной науки и техники. Серия: «Вакуум, чистые материалы, сверхпроводники». 1998, вып.1(2), с.72-76.
- 7. В.М.Ажажа, П.Н.Вьюгов, С.Д.Лавриненко и др. Электронно-лучевая плавка циркония

- //Вопросы атомной науки и техники, Серия: 2000, №5, с.3-11.
- 8. В.М.Ажажа, П.Н.Вьюгов, С.Д.Лавриненко и др. *Цирконий и его сплавы: технологии производства, области применения. Обзор.* Харьков: ННЦ ХФТИ. 1998, 89 с.
- 9. В.М.Ажажа, П.Н.Вьюгов, С.Д.Лавриненко и др. Исследование процесса рафинирования кальциетермического гафния электроннолучевой плавкой //Вопросы атомной науки и техники. Труды конференции «Проблемы циркония и гафния в атомной энергетике», 14-19 июня 1999г, г.Алушта, Крым. Харьков: ННЦ ХФТИ, 1999, с.36-37.
- Х.Р.Смит, Ч.А.Хант, Ч.У.Хэнкс. Промышленная электронная плавка и ее влияние на химический состав металлов и сплавов. /В.кн. Электронная плавка металлов. М.: «Мир», 1964, с.11-44.
- 11. В.М.Ажажа, П.Н.Вьюгов, С.Д.Лавриненко, Н.Н.Пилипенко. Очистка кальциетермического циркония и гафния от кислорода // Вопросы атомной науки и техники. Серия: Физика радиационных повреждений и радиационное материаловедение. 1997, вып.1(65) 2(66), с.144-150.
- 12. М.Л.Коцарь, В.И.Никонов, В.В.Шаталов и др. Особенности электронно-лучевого рафинирования сплавов на основе циркония и гафния./ XVII научное совещание «Высокочистые материалы с особыми физическими свойствами» Суздаль 9-12 октября 2001г. Тезисы докладов. М., 2001, с.50-51.
- 13. М.Л.Коцарь, В.М.Ажажа, М.И.Борисов и др. Получение чистых циркония и гафния //Высокочистые вещества, 1992, вып.2, с.85-92.
- 14. А.П.Мухачов. *Металевий гафній ядерної чистоти*. Автореф. дис.канд.физ.-мат. наук. Харків, 2001.
- 15. Л.И.Осипова, К.К.Малышев. Современный уровень чистоты металлов (по материалам Выставки-коллекции веществ особой чистоты). /В кн. Чистые металлы (Сборник докладов 7 Международного симпозиума), Харьков, 2001, с.17-21.