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The expressions for the wakefield have been derived and it has been shown that the transformation ratio in the
dielectric resonator is significantly higher than the transformation ratio in the case of waveguide at large number

of injected trains of identical bunches.
PACS: 29.17.+w; 41.75.Lx;

INTRODUCTION

The transformation ratio determines the maximal
energy, to which the electrons are accelerated in the
dielectric resonator for some energy of electron driver-
bunches. It is widely investigated in the case of the
wakefield excitation in dielectric waveguide [1, 2].
However, the dielectric resonator has an advantage for
the electron acceleration [3, 4] and therefore it also
widely investigated [5, 6]. Therefore, we investigate the
transformation ratio at the wakefield excitation in the
dielectric resonator [7]. The transformation ratio is
determined as a ratio of the energy, gained by the ac-
celerated bunch, to the energy of the sequence of
bunches, exciting wakefield. In many cases transfor-
mation ratio can be concluded to the ratio of maximum
accelerating wakefield experienced by witness bunch to
the maximum slowing down wakefield experienced by
driver bunches.

One rectangular in longitudinal direction bunch,
each of length, equal to half of wave-length, is injected
in each wavelength. The charges of bunches have the
step shaping, so that every step consists of several
bunches of identical charges in each. The charge of
bunches of next step grows according to linear law
1:3:5 ...

TRANSFORMATION RATIO
AT WAKEFIELD EXCITATION
IN ADIELECTRIC RESONATOR
AT CHARGE PROFILING OF SHORT
STEPPED SEQUENCE OF BUNCHES
BY LINEAR LAW

The transformation ratio at wakefield excitation in a
dielectric resonator at charge profiling of short stepped
sequence of bunches by linear law is considered. For
that we consider the resonator of length L, in which a
sequence of bunches are injected, each of length
A&, =2/2. Here & is the wavelength. The sequence of

bunches is selected with the step shaping of charges of
bunches (see Fig. 1), so that every step consists of N,

bunches of identical charges in each (Fig. 1).
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Fig. 1. Temporal charge evolution of considered train

of bunches
The heights of steps (charge of bunches of next
step) grows according to linear law 1: 3: 5: ... . At ar-

riving of the front of the first bunch to the end of the
resonator the excited wakefield train is occurred in lon-
gitudinal direction inside of a spatial interval of length

L, =L(1-V,/V,)+Ag, <L. Here V, is the group
velocity, V, is the velocity of bunches. The length of

wakefield train after an arbitrary longitudinal point z,
to which a bunch arrives, is equal to

z(1-V, /V, )+ A&, <z. The amount of bunches, which
wakefields are coherently added in a point z, equals
[(1=V, Vo) (2/1)+ A8, /1 [(0n /o). @ s the wave
frequency, o, is the repetition frequency of the bunch-
es. On the O<z<z,

2, =1 (0/0,)- A&, /A ]/(Vo/V, -1), L2, , the wake-
field is excited only by a single bunch. z, is determined
by that in this point a next bunch comes up the back
front of wakefield train, excited by a previous bunch
2, [V, + A, [V, =2, [V + 21/ o,
There are two cases:
1) the case when the next inequality is satisfied
2(1-V, |V, ) < Ag,, A&, <z.

Then the length of the leading and trailing edges of

train, excited by bunch, equals z(l—Vg/Vo) . The

length of the wakefield train equals Ag,. In other

words near the boundary of injection the length of the
wakefield train is determined by the length of the
bunch.

2) Far from the boundary of injection, when the
next inequality is satisfied

2(1-V, /V,) > AL,
the length of the leading and trailing edges of wakefield
train equals Ag,. The length of the train equals

z(l—Vg /VO). In other words far from the boundary of
injection the length of the wakefield train is determined
by 2(1-V, /V,).

We choose such parameters, that the front of (i+1)-
th bunch comes up the trailing edge of i-th wakefield

interval where
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train at the end of resonator (at z =L ). This condition
can be written down in the following view

L(1-V, /Vy ) =MV, /V, ) (/o) -
@)
Let us show that there are the integer of wave-
lengths on length of train at the end of the resonator
(Vo=V, )LV, =2q,, 0,=123,.... )
Indeed from (1) we have
(LY, (Vo -V, ) =21/a,, -
From here one can derive
(L/2V, ) (Vo =V, ) = (Vo /2) (21 0,) = 0 0, = 0.
If ratio ®/w, equals integer (condition (3)) the
condition (2) is satisfied automatically.
At the repetition frequency of the bunches
oo, =p, =123, ... (3)
(the sequence of resonant bunches) the excited wake-
fields are added at the end of the resonator z=L so,
that the wakefield becomes a monochromatic wave.
Waves of frequencies o,
0, =00, 0,=2,4,.. 4)
cannot be excited, because on length of bunch the inte-
ger of wavelengths is occurred.

For the use of the resonator of large length L, itis
necessary according to expression

L/ =(Vy Vo ) (/o) /(1-V, /Y, ) )
to use V,, close to V,, and/or to use large o/w, with

taking into account that the resonator length L should
include an integer of wavelengths

L=Nx, N=123,.. (6)
or odd number of half-wavelengths
L=M)A/2, M=13,.... (7

But the bunches interchange by energy with a
backward wave in the case (7). One can show that if the
following inequality is satisfied

R(W4L)<<1 (8)
the energy exchange of bunches with a backward wave
is small in comparison with an energy loss of bunches
in a decelerating wakefield of a forward wave.

The fields are added coherently after their complete
passage through the resonator in forward and backward
directions with V, during time 2L/Vg . From here one

can derive the number of identical bunches in every
step (see Fig. 1)

No = (2L/A)(Vo/V, )(on /o). (9)
This scheme is possible to use train of witness

bunches. Using (9) one can derive that the following
number of bunches

Ny =(No/2)(V, /Vs) (10)
are simultaneously in the resonator. This number is
truncate to a large value. The forward wave is modulat-
ed. At the end of resonator the forward wave becomes a

homogeneous wave. As a result the backward wave is
also homogeneous wave.
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To become an excited wakefield a monochromatic
wave at the end of resonator, the repetition frequency of
the bunches should follow the condition (2) o =p,®,,

p, =1,2,3,.... Because the bunches are resonant along

the resonator, then for transformation ratio increase it
is necessary, that during the time of return of backward
wave from z=L to z=0 the wakefield phase should
shift by the odd number of half-wavelengths

2L/ =(V,/V,)d, 9, =1,35,.... (11)

The conditions of transformation ratio increase due

to this method are not satisfied in the case L/A=P,

P=123,... Then 2L/A =M,
M=13,...

We will derive longitudinal distribution of the sin-
gle-mode wakefield in a dielectric resonator for differ-
ent times for the case o/w,=3, L/A=9/2,

V,/V, =06, N, =5, q,=15, N, =2. We take into
account that on times t > 2m/w,, two bunches are sim-

ultaneously in the resonator. Then temporal charge
evolution of considered train of bunches, of longitudi-
nal distribution of the wakefield in the resonator at the
moment t=L/V,-n/w and the longitudinal distribu-

tion of the wakefield of forward wave at the moment
t=2L/V, +L/V,—n/o looks like, shown in Fig. 1,

Fig. 2 and Fig. 3.
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Fig. 2. The longitudinal distribution of wakefield
in a resonator at the moment
t=L/V,-m/o

Fig. 3. The longitudinal distribution of forward
wakefield in a resonator at the moment
t= 2L/Vg +L/V, /o

We find that excited wakefield equals in the hole
resonator at the moment t=L/V, —n/o

E,(z,t)=E, (r) X
{[0(Vot=2)-0(Vyt—2/2-2)]05sin(k(Vyt—2))+
[0(Vot=2/2-2)=0(V, (t-m/w)-2) sin(k(V,t-2))+

+[0(Vot—Lo/w, —2)-0(Vyt—Low/o, —1/2-2)]x
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x0.5sin (k(VOt -ro/o, - Z))+
[-0(Vyt=2(V, Vo )(1/2+ /e, ) ~2) +
+0(Vot =1 oo, —2/2=2)Isin (K (Vyt - A o/o, 2))}.

(12)

At the moment t=2(N, —1)L/V, +L/V, - /o the

excited wakefield of the forward wave in hole resonator
equals

E,(z 1)=E,(r)x
{[0(Vot—=2)-0(Vyt—2/2-2)]05sin(k(V,t-2))+
+N,[0(V,t—2/2—-2)~
-0(V, (t-m/w)-z)Isin(k(Vyt-2z))+
+[0(Vot—Lw/w, —2)-0(V,t—Lo/o, —1/2-2)]x
x0.5sin (k (Vot -1 o/, —2))+
N[0Vt =2(V, /) (Y2 + 0/, ) -2) +
0(Vot -2 /e, —1/2-2)Jsin (k(Vot -1 o/, -2))
-(N, =1)[0(L-2)-0(Vyt—2)sin(k(Vst-2))-
[0(Vot=2(V, Vo) (Y2 + /o, ) ~2)-6(2) |
x(N, =1)sin(k(V,t-z))-
-[0(V, (t-7/0)-2)-0(Vyt-1o/o, ~2) ]x

x(N, =L)sin(k(Vot-2))}
N, is the number of injected trains of identical bunch-

(13)

es. One can see that the wakefield amplitude increases
in N, times in comparison with (12). Then the trans-

formation ratio equals
R=2N, =2N/N,,
N is the number of injected bunches.

CONCLUSIONS

The conditions have been formulated, when the
wakefield pulses, excited by all consistently injected
bunches, are coherently added and the witness-bunch
interacts with full pulse. The conditions have been for-
mulated, when decelerating longitudinal wakefield for
all bunches is small that provides a large transfor-
mation ratio. The expressions for the wakefield have
been derived and it has been shown that the transfor-

(14)

mation ratio is significantly higher than the
transformation ratio in the case of waveguide at large
number of injected trains of identical bunches.
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KO®PUIMUEHT TPAHC®OPMAIIUU TP KNWJIBBATEPHOM YCKOPEHUH
B JIUDJIEKTPUYECKOM PE3OHATOPE

B.U. Macnos, U.H. Onuwenko

HOJ’Iy‘IeHLI BBIPAXKCHUSA UIA KUJIBBATCPHOI'O IMOJIA U IOKA3aHO, YTO K03(1)(1)I/IHI/I€HT TpaHC(l)OpMaHI/II/I B JUDJICKTPU-
YCCKOM PE30HATOPC 3HAUYUTCIILHO MMPEBBIMIACT €ro B CJIy4ac BOJIHOBOAA ITPU 3HAYUTCIBHOM KOJIMYCCTBEC MHIKCKTHUPO-

BaHHBIX HpO(l)I/IJ'II/IpOBaHHI)IX LYTOB OANMHAKOBBIX CT'YCTKOB.

KOE®IIIEHT TPAHC®OPMAIIIL ITPU KILIbBATEPHOMY ITPUCKOPEHHI
B JIEJJEKTPUYHOMY PE30OHATOPI

B.I. Macnos, I. M. Onuwenko
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OTpuMaHO BHpa3H AJIsl KiJIbBATEPHOTr'O ITOJI 1 TOKa3aHo, 1o KoedimieHT Tpancdopmanii B qieIeKTpuIHOMY pe-
30HATOpI 3HAYHO IIEPEBHIIYE HOr0 y BHITAJKy XBWJIEBOAY IPH 3HAYHIM KiJIBKOCTI 1HXKEKTOBAHHX MPOQLIEOBAHUX
IL[YTiB OJJHAKOBUX 3TYCTKIB.
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