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1. INTRODUCTION
In order to describe the performance of a beam on rf 

accelerators  one  have  to  consider  the  total  beam 
intensity.  Full  characterization  of  an  external  beam 
requires knowledge of its hyperemittance.

Early the eminence data measurement was made by 
slit methods [1]. Such methods are simply and reliable 
but  the  measurements  are  carried  in  both  directions 
separately.  Therefore  slit  procedures  are  so long time 
continues.

Using  co-called  pepper-pot  method  it  gives 
possibility to measure and extract the emittance data in 
both  transverse  phase  spaces  at  the  same  time.  Such 
device already was tested on lineal accelerator UNILAC 
GSI (Darmstadt, Germany) [2].

In this paper the complex mathematical algorithm for 
analysis of experimental data by computer codes using 
such  measured  method  is  presented.  The  new  more 
effective  graphic  algorithm  for  the  determination 
emittance and the Twiss parameters is described.

2. PEPPER-POT MEASURED METHOD
The  main  element  of  the  pepper-pot  device  is 

pepper-pot plate with a regular array of identical holes 
(hole diameter is about 0.2 mm and distances between 
two  holes  are  2.5  mm [1])  arranged  over  its  whole 
surface.  The  sample  beamlets  hit  a  viewing  screen 
situated in the angular analysis plane in a well-defined 
distance behind the pepper-pot plate. Therefore the two 
plates form a "multipinhole camera" (see Fig. 1.). 

The  experimental  data  must  be  represented  as  so 
many density diagrams as there are holes in the pepper-
pot plate. The information of emittance is extracted from 
size, shape and location of the light spots observed on 
the viewing screen.

On  the  first  measured  step  to  determine  the 
correspondence  between the  spot  picture  and the  real 
physical  dimensions  the  calibration  process  a  parallel 
light beam from a laser is used. The coordinates on the 
image,  correlated  to  the  location  of  the  holes  in  the 
pepper-pot  plate  can  be  obtained  from  the  center  of

 

Fig. 1. Pepper-pot diagnostic device: P - pepper-pot 
plate;  V  -  viewing  screen  with  one  spot  from  the 
hole (Xj,Yk )

intensity of  each  light  spot.  It  would be  matrix  (Xhr,  
Yhp); r = 1...rmax;  p = 1...pmax, where rmax and pmax 
- are hole numbers in horizontal and vertical directions. 
The lightest point on the laser image  (XС, YС)  defines 
the  beam center.  As  example,  Fig. 2  shows the  light 
spots  from laser  and  real  beam O3+  from diagnostic 
pepper-pot device for UNILAC, GSI [1].

The  experimental  results  for  the  future  calculation 
are  represented  as  2-dimensional  numerical intensity 
distribution  matrix  Ii,j=I(xi,yj),  where  i  =  1...Inp,  j  = 
1...Jnp. Here  Inp and  Jnp are pixel numbers in horizontal 
and vertical  directions.  For the GSI diagnostic  device 
[3]: Inp = 1280, Jnp = 1024,  rmax = pmax = 15.

3. THE SMOOTHING PROCEDURE
As already mentioned one has to notice, that in case 

the experimental data for intensity in dependence of the 
coordinate  are  not  smooth  enough  an  incorrect 
determination of emittances may result. Therefore, in a 
first step a smoothing process to the experimental data 
has to be carried out. It is suggested to use the least root-
square method with Legendre polynomials as a basis [4].

In the interval [x0, xn] the discrete function I(x,yj) for 
the fixed yj can be approximate by polynomials:
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Fig. 2. The experimental  
data from laser (left) and  
ion beam O3+ 1.4 Mev/u 
(right) from pepper-pot  
device (UNILAC, GSI,  

Darmstadt)
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Fig. 3.  Example  of  the 
smoothing procedure: 
a) initial beam spectrum;
b) smoothed beam spectrum
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with m ≤ n, and Lk(x) - basis Legendre polynomials.
The  unknown  coefficients  ск  are  found  by 

minimization of the expression:
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where xk are experimental data points in the interval  [x0,  
xn]. Using the well-known Gauss method without choice 
of  the  main  element  [5]  this  system  of  the  normal 
equations can be solved and as result the smoothing data 
IF(x,yj)  are obtained.  As an example the experimental 
data before and after smoothing are shown in Fig. 3.

 



Fig. 4. Intensity distribution within 
one distinguished spot

                   a)                                                               b)

Fig. 5. Horizontal (a) and vertical (b) projected one spot (see Fig. 4)  
intensity  distribution:  vectors  Ix,  Iy  (points  curves)  and  approximated  
Gaussian functions (solid lines)

4.  APPROXIMATION OF THE INTENSITY 
DISTRIBUTION FOR EACH SPOT BY 

GAUSSIAN FUNCTION
To get correct information about emittance and the 

Twiss  parameters  each  spot  has  to  be  analyzed 
separately. For this meter the special cycling procedure 
to detect and distinguish each spot is carried out. Inside 
this procedure the sizes and projections for each spot are 
determined. Fig. 4 shows one detected spot.

Since the particle  density distribution of  the  beam 
near  the each peak can be  represented by a Gaussian 
function  [6]  the  projected  spot  curves  can  be  also 
represented by similar shape:
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where IS0 - denotes the peak height of the spot intensity 
and x0 is the peak position, σ is normal width.

It  is  necessary  to  note,  that  the  projected  curves 
usually will have non-symmetrical shape. Therefore the 
left  and  right  sides  of  curves  can  be  described 
separately. Preliminary the left side has to be extended 
to  the  right  direction  and  the  right  curve  to  the  left 
direction.  So,  each  spot  is  defined  by  four  Gaussian 
functions  (two  for  each  direction).  Our  further 
description is devoted to the symmetrical curves.

In order to find σ one can apply the relation:
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where h = xi - xi-1. The logarithm of this expression is:
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.                (3.1)

For the function (3.1) it is used the least squares method 
with weight function W [7]:
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The next function is minimized:
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where  N -  number  of  pixels  that  are  involved  in  the 
approximation. 
After some treatment the solution for σ is:
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By this way each spot is described by Gaussian function 
in both directions. In Fig. 5 the projected experimental 
data for the light spot from Fig. 4 and the curves which 
they approximate are shown.

5.  DEFINITION OF THE DIVERGENCE 
FOR THE SPOT

Using  approximation  by  Gaussian  function  it  is 
possible to find the divergence for different fractions of 
the maximum intensity. From (2) the formula of lineal 
deviation is given by:
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where ∆ x = x - x0.  The spot divergence in horizontal 
direction is:
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where dx = x0 - xhole. The same calculations for vertical 
divergence YD', YU' are made with dy = y0 - yhole . Here 
x0, y0 are the positions of the maximum intensity within a 
spot  and  xhole,  yhole are  the  coordinates  of  the 
corresponding hole. Values of ∆ xr, ∆ xl, ∆ yd, ∆ yu 
are calculated using the formula (7):
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Number of h is determined by h
h

N p

= ∆
, where ∆ h  is 

the spacing between two holes and Np  is the number of 
pixels  two  holes.  Value  L  is  the  distance  between 
pepper-pot plate and the viewing screen.

Using the procedure described above, 5 matrixes (4 
matrixes  with  divergences  XR',  XL'  for  horizontal 
direction, YU',  YD' for  vertical  one  and  matrix  IST 
representing the total spot intensities) are formed.

6.  FORMATION OF THE 
HYPEREMITTANCE

The  two-dimensional  intensity  distributions  in 
horizontal  and  vertical  phase  planes  have  to  be 
calculated. In the vertical plane the averages of XRP and 
XLP  for each vertical column in matrixes  XR',  XL'  are 
found. And in vertical plane the averages of YDP и YUP 
for  each  horizontal  line  in  matrixes  YD', YU'  are 
determined.

As result  for  all  two points from vectors  XRP  and 
XLP the horizontal coordinate of some hole is putted in 
conformity, while for all two points from vectors YDP, 
YUP  the vertical coordinate of some hole is putted in 
conformity. By this way the emittance pattern is formed 
in  two  phase  spaces.  In  Fig. 6  the  example  of  the 
emittance pattern is shown.

7.  DEFINITION OF THE EMITTANCE AND 
CALCULATION OF THE TWISS 

PARAMETERS BY A GRAPHIC METHOD
The phase space figure on the next step should be 

represented by some ideal ellipse with coordinate center 
and inclination angle θ. Then the square of such ellipse 
defines the emittance value ε. The relation between the 
Twiss parameters and approximated ellipse is described 
by Courant-Snyder invariant [6]:

γ α β ε⋅ + ⋅ ⋅ ⋅ + ⋅ − =x x x x2 22 0' ' .          (9)
Here α, β, γ = (1+α2) /β   are the Twiss parameters 

that should be defined.
The  area  enclosed  within  all  of  the  phase  space 

figure points can be estimated by such formula for the:
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Than the emittance is [6]:

ε
πx

SX= .           (11)

In order to define the Twiss parameters one can apply 
the co-called graphic method.

Using the next coordinate transformation the ellipse 
is turned on the angle θ [8]:

x x x= ⋅ − ⋅cos ' sinθ θ ,       

x x x' sin ' cos= ⋅ + ⋅θ θ .           (12)
After  the  substitution  (12)  in  the  canonical  ellipse 
equation [7], one gets the next expression:
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where К1 and К2 are the ellipse half axis length and the 
coefficients А and В are found using angle θ:

A
tg
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+

1
1 2θ  , В = tgθ .              (14)

After  multiplying  of  the  equation  (13)  by  ε and 
comparing with (9), the Twiss parameters are described 
by:
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To  find  the  inclination  angle  of  the  ellipse  tgθ,  the 
average value for the angles tgθr of all pair XRPr,  XLPr 

is calculated:
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Then value tgθ  is presented as :
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One half axis К1 is defined as maximum value between:
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where i = 1, rmax.
The next half axis is calculated from formula for 

ellipse area [8]: К2 = Sx/(π•К1). 
When the  emittance  and the Twiss parameters  are 

defined it is easy to find the ideal ellipses in horizontal 
and vertical phase spaces. In Fig. 7 such ellipse for the 
emittance pattern from Fig. 6 is shown.



Fig. 6.  Example  of  the 
emittance  phase  space 
pattern

Fig. 7.  Phase  space 
approximated ellipse for the 
pattern from Fig. 6.

8. CONCLUSION
In comparison with another slit diagnostic methods 

the  pepper-pot  algorithm  has  some  advantages.  This 
method  gives  possibility  to  measure  the  emittance  in 
both transverse phase spaces at the same time. Therefore 
the measurements and proceedings of the data are going 
faster. The mathematical algorithm, which is described 
in this paper, can be used not only at presented method, 
but at another ones also.

Pepper-pot  device can be also installed in the low 
energies  accelerators  of  INR,  Kiev,  Ukraine  (for 
example,  in  the  cyclotron  U-240).  The  mathematical 
algorithm, which is presented here, can be applied in the 
complex computer code for the definition of the beam 
emittance and the Twiss parameters.
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