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We develop an approach for a description of collective excitations in a two-dimensional gas of interacting Bose 
particles in an external potential. We present a method of finding an approximate analytical solution for the spectra 
of collective excitations of a Bose gas in a linear potential and in a potential of the form lxuu /cosh)( 2

0−= µr , 
where µ  is the chemical potential.  Numerical study shows that the analytical solution corresponds to collective 
modes localized at the edge or at the low-density region. We investigate the influence of the external potential on a 
critical velocity of a superfluid flow. It is shown that the effect of strong suppression of the critical velocity takes 
place in a nonuniform Bose system.  We discuss a possibility of Bose-Einstein condensation (BEC) in the systems 
under investigations at nonzero temperatures and find that in case of a finite number of the particles BEC can 
emerge.

PACS: O3.75.Fi

1. INTRODUCTION
The  influence  of  an  external  potential  on  Bose-

Einstein condensation (BEC) in two-dimensional (2D) 
Bose systems is one of challenge problems. In an ideal 
Bose  gas  an  external  potential  may  cause  BEC  at 
nonzero  temperatures  in  two  dimensions  [1-3].  The 
question whether it is the case for interacting Bose gases 
has not been clearly understood yet. Discovery of BEC 
in alkali metal vapours confined in a trap [4-6] revives 
the interest to this question. Petrov et al [7] argued that 
at 0≠T  a true condensate or a quasicondensate with a 
fluctuating phase can emerge in an interacting 2D Bose 
gas confined in a harmonic trap. A mean field study of a 
2D interacting trapped gas was done by Bayindir and 
Tanatar [8]. Basing on the similarity in thermodynamic 
behavior of ideal 2D Bose systems and those with weak 
interactions  they  conclude  that  BEC  takes  place  in 
systems with a finite numbers of the particles. Mullin 
[9,10]  demonstrate  the  absence  of  BEC  in  trapped 
interacting  Bose  gases  in  2D  in  the  thermodynamic 
limit. 

In the present paper we address this problem with 
reference  on  two  specific  forms  of  the  external 
potential.  We  consider  the  potential 

l
xuyxu 2cosh),( −= µ  and  the  linear  potential 

xyxu αµ −=),(  ( µ  is  the  chemical  potential).  The 
first one corresponds to a situation when a low-density 
valley is formed in a Bose cloud. Since this potential 
pushes the particles away from the centre of the Bose 
cloud we call it an “anti-trap” one. The second potential 

models  a  Bose  cloud  with  a  linear  increase  of  the 
density  in  a  direction  perpendicular  to  the  edge.  For 
such a choice of the potentials the analytical expressions 
for the low energy collective excitations can be found 
and macroscopic quantum properties of the systems can 
the investigated systematically. We should mention that 
the  third  example  of  the  potential  for  which  the 
analytical solution can be obtained is the harmonic trap 
potential.  In  2D  this  problem  was  considered  by 
Stringari [11].

In Sections 2 and 3 we outline our approach. In more 
details it was given in Ref. [12]. In Sec. 4 the influence 
of  the  external  potential  on  the  critical  velocity  of  a 
superfluid  flow  is  studied.  In  Sec. 5  we  discuss  the 
possibility of BEC in non-uniform systems.

2. BASIC EQUATIONS
We  consider  a  Bose  gas  with  a  point  interaction 

between the particles in an external potential )(ru . The 
Hamiltonian of the system has form  
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where  Ψˆ  is  the  boson  field  operator,  m ,  the  boson 
mass,  γ ,  the  interaction  constant.  To  rewrite  the 
Hamiltonian in terms of elementary excitation creation 
and annihilation operators we use the approach of  Ref. 
[13]. We  decompose  the  Bose  field  operators  as 
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ˆ ˆˆ ρρΨ ϕ += ie , where  ϕ̂  is the phase operator and 

1ρ̂ ,  the  density  fluctuation  operator.  Expanding  the 
Hamiltonian into powers of ϕ̂∇  and 1ρ̂  we obtain 

+++= 210 HHHH       ,                 (2)

where 0H  is the operator independent part,
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In Eq.(4) 
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We  require  the  vanishing  of  the  linear  term  in  the 
Hamiltonian (2). It yields the equation for 0ρ
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 .                         (6)

The  value  of  0ρ  coincides  with  the  density  of  the 
particles at T=0. One should note that our consideration 
is valid at temperature mT /0

2 ρ< < .  
To reduce the Hamiltonian into a diagonal form we 

rewrite the phase and density fluctuation operators as
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where  +bb ˆ,ˆ  are the Bose operators.  The functions  F  
and Θ  satisfy the equations

νννΘ FET =ˆ  ,                                                 (9)

ννν ΘEFG =ˆ ,                                             (10)

They are normalized by the condition 1*2 =∫ ννΘ Frd . 
After substitution  Eqs. (7,8) into Eq. (4) the quadratic 
part of the Hamiltonian reads as

∑ ++=
ν

ννν bbEconstH ˆˆ
2 .                              (11)

Eq. (11) shows that the operators νν bb ˆ,ˆ+ are the creation 
and annihilation operators of the elementary excitations. 
The energies of the excitations  νE  can be found from 
the solution of Eqs. (9,10) with the boundary conditions 
specified.

3. SPECTRUM OF THE EXCITATIONS
Let us consider an external potential

l
xuu 2

0 cosh)( −= µr .                 (12)

For  the  parameters  satisfying  the  inequality 
22

0 2/ mlu > > one can neglect the fourth term in the 

l.h.s.  of  Eq. (6).  It  yields  )/(cosh)/( 2
00 lxu γρ = .  In 

the  low-energy  approximation  one  can  also  omit  the 
operator  part  in  the  quantity  Ĝ  and  reduce  the 
eigenvalue problem to the following one
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Here we take into account that the system is uniform in 
y direction and put )()( xeikyθΘ =r . Eq. (13) is reduced 

to a hypergeometric equation and their general solution 
is expressed through hypergeometric functions.

For the system finite in the x direction with the rigid 
walls  at  Lx ±=  the  flow  through  the  walls  should 
vanish. It determines the boundary conditions
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In the limiting case of  ∞→L  instead of Eq. (14) we 
should require the fluctuations be finite at  ∞→x .  In 
this  case  the  eigenvalue  problem  can  be  solved 
analytically. The spectrum has the form




 +++


 ++= 2222
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where 2
0

2
0 / mlu=ω  and 2,1,0=n .

Comparing  the  analytical  result  with  the  solution 
obtained  numerically  for  finite  L  we  find  that  at 

)/( cEk nk > ( c  is  the sound velocity in the uniform 
system with the same average density of the particles) 
Eq.  (15)  approximates  the  numerical  solution  with  a 
good accuracy (Fig. 1).

Fig. 1.  Spectrum  of  the  excitations  in  the  “anti-
trap” potential.  Solid curves – numerical solution for  
L/l=3,  Dashed  curves  –  analytical  approximation 
(Eq. (15))

The spatial dependence of the density fluctuation for 
the three lowest modes is shown in Fig. 2. One can see 
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that at small  k the whole system is disturbed, while at 
large  k  the  modes  are  localized  at  the  low-density 
region.  Analytical  expression  (15)  describes  the 
spectrum of the localized modes.

Fig. 2. The  amplitude  (in  relative  units)  of  the  
density fluctuation for the low-energy collective modes  
in the “anti-trap” potential.  Solid curves,  n=0 mode;  
dashed curves, n=1, mode, dotted curves, n=2 mode

For a linear potential  xu αµ −=)(r  the eigenvalue 
problem  is  reduced  to  a  confluent  hypergeometric 
equation
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 If the system is confined in a region 0<x<L the solution 
should satisfy the boundary condition (14) at x=+L. The 
second boundary condition  is  the  requirement  for  the 
solution to be finite at 0→x . 

The analytical expression for the excitation energies 
can be found in a limit ∞→L .  It has the form

)12(||
2

+= nk
m

Enk
α                      (17)

( 2,1,0=n ). The spectra of the excitations given by 
the analytical expression and by the numerical solution 
are presented in Fig. 3.

Fig. 3. The spectrum of the excitations in the linear  
potential   ( mL/2

0 αε = ). Solid curves – numerical  
solution, dashed curves – analytical approximation (Eq.  
(17))

Here as in the previous case the analytical solution is 
valid  at  )/( cEk nk > .  The spatial  dependence of  the 
density fluctuations for three lowest modes is shown in 
Fig. 4.  One  can  see  that  analytical  solution  (17) 
corresponds to the modes localized at the edge.

Fig. 4. The amplitude of the density fluctuation for  
the  low  enegry  modes  in  the  linear  potential.  Solid,  
dashed  and  dotted  curves  –  n=0,1,2  modes,  
correspondingly

Eq. (16) was derived in a linear approximation for 
the function  )(0 xρ .   This approximation is correct  at 

3 2
0 / αmxx => , when the fourth term in the l.h.s. of 

Eq.  (6)  can  be  neglected.  The  solutions  of  Eq.  (16) 
singular at  0→x  can be omitted at  kx0<<1. It yields 
the condition

3/1
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α  .                            (18)

Inequality (18) establishes the validity of the analytical 
as well as the numerical solution.

4. CRITICAL VELOCITIES
In  this  section  we  consider  the  influence  of  the 

external potential on a critical velocity of a superfluid 
flow. We specify the system infinity in x direction with 
a  nonuniform density  area  of  a  finite  width.  Let the 
external potential has the form




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where  )/(cosh2
0 lLuU −= µ .  In  the potential  (19)  a 

Bose  cloud has  a  low-density  valley of  the  width  2L 
aligned along the  y direction. The valley separates two 
uniform  density  areas.  In  this  case  the  analytical 
solution (15) corresponds to the modes localized in the 
valley. The extended modes have higher energies at the 
same  k  ( 22

xext kkcE +=  ).  Using  the  Landau 
criterium  we  determine  the  critical  velocity  for  the 
superfluid flow along the y direction as
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min .                                     (20)

Since the n=0 localized mode has the lowest energy one 
should substitute Eq. (15) with n=0 into Eq. (20), taking 
into account that Eq. (15) is valid at k1<k<k2. Here k1 is 
given  by  the  equation  10 1

kcE k = .  Since  the  low-
energy approximation was used in Eq. (15), the upper 
restriction  on  k  emerges.  This  approximation  requires 

)0(22/ 0
22 γ ρ<mk .  It  yields 

)/(cosh)/2( 1
2 lLLk c

−= ,  where  cmLc /=  is  some 
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length1.   At  21 kk <  the  critical  velocity  is  equal  to 
20 /

2
kE k  . If the opposite inequality 21 kk >  is satisfied 

the  critical  velocity  is  determined  by  the  extended 
modes. The last ones yield cvc = . The general formula 
for cv  is the following
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At 1/,/ > >cc LLLl  we find )/(cosh 1 lLcvc
−= . In this 

limit the presence of the low-density valley results in a 
strong  suppression  of  the  critical  velocity.  When  the 
ratio cLL /  becomes smaller the critical velocity grows 
up. It is illustrated in Fig. 5. 

At  cLL <  Eq. (21) predicts no suppression of the 
critical velocity. Physically, such a case corresponds to 
two  weakly  coupled  semi-infinite  Bose  clouds.  Thus, 
the quantity  cL  plays a role of a critical parameter for 
the  width  of  the  low-density  valley.  If  this  width 
becomes large then cL2  the critical velocity decreases. 

Fig. 5. Critical velocity (in units of c ) in the “anti-
trap” potential. Solid curve – L/Lc=3; dashed curve – 
L/Lc=5; dotted curve – L/Lc=7

Let us then consider the potential of the form
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In such a potential the density of the particles increases 
linearly  from  x=0  to  x=L and  then  at  x>L  becomes 
uniform. For this geometry Eq. (17) yields the spectrum 
of collective modes localized at the edge. These modes 
have lower energies then extended ones and determine 
the critical velocity. The value of the critical velocity is 
given by the formula (20) with the energy  (17). The 
values or  k are restricted by the condition (18).  They 

1 If the density of the particles in the uniform part is fixed, this 
length  remains  constant  under  variation  of  the  parameters  of  the 
external potential.

should  also  satisfy  the  inequality  okEck > .  If 

cokc Eck < (this inequality is equivalent to cLL < ) the 
localized modes do not exist and the spectrum of the 
extended  modes  should  be  put  into  Eq.  (20).  The 
dependence of the critical velocity on the parameters of 
the system has the form
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One can  see  from Eq. (24),  that  a  suppression  of  the 
critical velocity takes place at  L  large then the critical 
length cL . 

We  should  note,  that  Eqs. (21,24)  should  be 
understood  as  estimate  expressions.  They  describe  the 
situation more qualitatively then quantitatively. Rigorous 
consideration  should  be  based  on  the  solution  of 
Eqs. (6,9,10) without the approximations used in Sec. 3.

5. BOSE-EINSTEN CONDENSATION
A  temperature  dependence  of  the  density  of  the 

Bose-Einstein  condensate  can  be  extracted  from  the 
asymptotic behavior of the one particle density matrix 

)'()( rr ΨΨ + .  If  this  quantity  remains  finite  at 

∞→− |'| rr  then  the  Bose  condensate  exists  and  its 
density )(rcn  is given by the equation
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'||
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rr cc nn=+

∞→−
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In 2D uniform systems at  0≠T  the quantity  (25)  is 
equal to zero. The destruction of the coherence is caused 
mainly  by  the  thermally  excited  phase  fluctuations. 
Taking  into  account  only  the  phase  fluctuation  we 
obtain
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direct the vector 'rr −  along the x axis. Then
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Let us consider a Bose cloud of a rectangle shape 
yLL × in the “anti-trap” potential and evaluate the value 

(27) at x=0. The answer at lyy >− |'| , 0ω> >T  is

0
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where  mT 2/)0(0
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2

0 ρ= , 
2

0
2 /)0( mTT γ ρξ =  2

0
2 / mTT ργξ = .  The first 

term in the r.h.s. of Eq. (28) is caused by the localized 
modes, the second one – the acoustic mode and the third 
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one - the zero point fluctuations. The value of 0Φ  does 
not  depend  of  the  temperatures  and  determine  the 
density  of  the  condensate  0cn  at  T=0.   While  the 
quantity (28) depends on  |'| yy − , for the system with 

lLL y > >~  this dependence can be neglected. In this 
case the density of the condensate at 0≠T  is equal to

04
0 )0()0(

T
T

T
cc l

nn
πξ





=                         (29)

It  is  important  to  note  that  our  result  does  not 
contradict  the  general  theorems  [14,15]  about  the 
absence  of  true  Bose-Einstein  condensation  in  two-
dimensional systems in the thermodynamic limit. In this 
limit one should put the total number of the particles N 
tends  to  infinity,  keeping  the  average  density 
unchanged. Then the quantity  L also tends to infinity 
while the ratio lL /  remains constant. Correspondingly, 
if  such  a  definition  of  the  thermodynamic  limit  is 
implied, the parameter  l tends to infinity as well. One 
can see from Eq. (29) that the density of the condensate 
approaches to zero at ∞→l . It is obvious result, since 
at  ∞→l  the  system becomes  locally  uniform at  all 
scales.

In case of linear potential similar derivation yields
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where  mxxT 2/)()( 0
2

0 ρ= ,
2

0
2 /)()( mTxxT γ ρξ =  ,  and  the  inequality 

xxT <)(ξ  is  implied.  In  the thermodynamic limit  we 
are  interested  in  a  density  of  the  condensate  at  cx ,  

satisfying  the  condition constxc =)(0ρ  at  ∞→N . 
Substituting  into  Eq.  (30)  cxx =  and  taking  into 
account  that  in  the  thermodynamic  limit ∞→cx ,  we 
find that the density of the condensate tends to zero.

 One can see, that for the potential  considered (as 
well  as  for  the  harmonic  trap  potential  [9,10])  the 
definition of the thermodynamic limit implies that the 
form of the potential depends on the total number of the 
particles. In practice, the form of the potential is fixed 
and under variation of the total number of the particles 
the average density is changed. Since the density cannot 
be infinitely large,  the number of the particles should 
remain finite. Thus, our conclusion about the existence 
of  the  Bose-Einstein  condensate  at  nonzero 
temperatures is formally applicable only to the systems 
with a finite number of the particles. But, in practice, 
this  limitation  is  not  important,  because  just  such 
systems are used in experimental studies of BEC.
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