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Recently new type of high temperature superconductors is found which are characterized by the existence of 
circular molecular orbits in each unit site of 2D s/p electron system. In view of the characteristic, a new model of 
superfluidity is studied based on the coherent state where the zero-point oscillation of toroidal wave function 
causes a macroscopic quantum state. This model gives an estimation of the superfluidity transition temperature: Tc

≈52−117 K  for fcc C60, and Tc≈50−150 K  for hole-doped MgB2.
PACS: 71.10.-w, 71.10.Pm, 73.40.Hm, 74.20.Mn

I. INTRODUCTION
The  cuprate-oxide  high Tc superconductivity  are 

known to be caused by 2D  d-electron system in CuO2 

network where the probability amplitude of  d electron 
extends  crosswise  from  each  Cu  ion.  Recently  new 
trend  of  high  temperature  superconductivity  [1,2]  is 
attracting  attention  where  (i)  non-d electron  system 
seems to be responsible to superconductivity, and where 
(ii) crystal structure appears to possess  ||c 2D network 
composed of the inter-connection of circular molecular 
orbits. In the report of Schön  et al. [1] the surface of 
fullerene  (C60) fcc  crystal  was  hole-doped  by  field 
effect,  where  Tc≈52−117 K  was  found  when  lattice 
constant is 1.415-1.445 nm. The 2D conduction surface 
in the system is formed by the inter-connection of the 
circular molecular orbit of each spherical C60  molecule. 
On  the  other  hand,  Nagamatsu  et  al. [2]  found  that 
MgB2 shows  superconductivity  with  Tc≈39 K.  The 
crystal structure of MgB2 is composed of 2D network of 
B hexagons, which has similarity to the 2D structure of 
graphite  (2D  network  of  C  hexagons)  except  the 
existence of centripetal attraction of electron by the field 
of Mg2+ ion. 

In  this  paper  we  study  the  macroscopic  quantum 
state of the 2D electron system in a network which is 
composed of  the inter-connected molecular units  with 
circular  molecular  orbits  [3],  where  each  of  the  2D 
electrons is supposed to be semi-localized in the annular 
potential well of the respective molecular orbit [4].

In section II is considered the macroscopic quantum 
state  originated  from  the  zero-point  oscillation  of 
toroidal  wave  function.  In  Section  III  is  given  the 
estimation of superfluidity threshold temperature of the 
materials based on the result of Section II.

II. GROUND STATE OF ONE PARTICLE 
AND MANY PARTICLE SYSTEM

We consider a 2D system of charged particle carriers 
(charge  Q0 and  mass  M0)  in  a  network,  which  is 
composed of the inter-connected molecular units  each 
of which has a circular particle orbit with the following 
condition. (i) Each of the 2D particles is supposed to be 

semi-localized  in  the  annular  potential  well  of  the 
respective  molecular  unit.  (ii)  In  the  annular  well  the 
ground  state  wave  function  ψ0 of  each  particle  has 
toroidal  amplitude  distribution  with  null  angular 
momentum (or ψ0(x,y) is real function like a caldera). 
(iii) ψ0 makes radial zero-point oscillation of expansion 
and contraction by frequency ω (iv) Thermal excitation 
of oscillation is forbidden by the condition 

ħω>>kBT.
According to the assumption, we select the ground 

state wave function of the particle to be a caldera-like 
real function

ψ0(m,ζ)=const× mς exp( 2ς /4)   with m=1,2,3 ... (1)

where  ζ=(x±iy)/l,  and  l= ω0/ M . The  functional 
form  of  (1)  is  the  same  as  the  ground  state  wave 
function for charged particle in magnetic field without 
phase factor exp(imθ). The wave function size  ml2  
may  be  equated  to  the  effective  radius  r0 of  the 
molecular unit. The wave function (1) is found to be the 
solution of Hamiltonian
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Hψ0(m)=( ћω/2)ψ0(m). (4)
V(x,y) with annular valley is the coulomb potential well 
made by the ions of molecular unit (or "lattice"). (2) and 
(3) can be rewritten in the following expression using 
"vector potential"
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Ŝ ψ0(m,ζ)= mћψ0(m,ζ )     m=1,2,3 ...     (9)
The vector potential (6) gives the dynamic expression of 
the electric force exerted by the lattice when the charged 
particle  goes outward.  In  the displacement  u from its 
equilibrium  position,  the  particle  feels  lattice  charge 
density ρ with dielectric constant ε by the equation
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potential A
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which leads to (6). The physical meaning of (8) and (9) 
is  explained by the  quantization  of  oscillation energy 
exchanged between the particle and the lattice:

x×dpx/dt+ y×dpy/dt
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The  potential  energy  (7)  expresses  the  repulsive 
polarization potential energy Q0µ/4πεr2,  where µ is the 
effective electric dipole moment formed in the lattice in 
the inward particle motion. The potential may balance 
with the kinetic energy
   Q0µ/4πεr2 = p2/2M0 = (rp)2/2M0r2  = ћ2m2/2M0r2,

where quantization (10) is considered.
We  must  note  that  H in  (5)  expresses  only  the 

particle  energy.  The  interaction energy  ∆E caused by 
the  exchange  of  oscillation  energy  mħω between  the 
particle  and  lattice  system is  estimated using  (6)  and 
(10) as follows.
∆E =  - 〉⋅〈 2

0 rAωQ /m ħω  = - m ħω/2 = - (ω/2)S. (11)
Now we consider a 2D system of  N semi-localized 

particles. The ground state ΨN of the system is described 
using (1) and (5) as follows:

ENΨN = HNΨN,   (12)

HN = ∑ −

N

j jj yxH
1
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ΨN = ∏ −

N

j jm
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We find the zero-point energy
EN0 = N ħω/2 (15)

and interaction energy by (11)
∆EN = -N mħω/2. (16)
In (13) (xj , yj) are the relative coordinate from the 

coordinate (Xj , Yj) of the center of the molecular unit j. 
(Xj , Yj)  does  not  appear  in  the  Hamiltonian  because 
particle energy is independent of it in our assumption. In 
case of electron (or fermion) system, one may consider 
a Slater determinant in place of (14). In the following 
we show that the N-particle Laughlin state ΨLN can have 
higher stability than ΨN state employing HN of (13).

It is known that the Laughlin function [5] describes 
well the 2D quantum state of fractional quantum Hall 
effect (FQHE) [5,6].
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Since the phase of the wave function does not have 
direct  physical  meaning in  FQHE [7],  we study  Ψ′LN 

instead of ΨLN 
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where  Ψ′LN  is  obtainable  by  a  gauge  transformation 
from ΨLN.

Using the replacement
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we can rewrite (17b) into a "diagonalized" form Ψ
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where is used the equality
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Considering (1)~(9), we know that the function (19) is 
the zero-point solution of the Hamiltonian

∑ >+ +=
kj jkLN HHH (21)

H+  = H(x+,y+)         (S+=0)
Hjk  = H(xjk,yjk)        (Sjk= ħm)

with eigen-energy
ELN0 =[1+N(N-1)/2] ħω/2 (22)

and interaction energy by (11)

∑ >+ +−=∆
kj jkLN SSE )(2/(ω

= -mN(N-1) ħω/4 (23)
Using (18) and referring to the equality (20) and other 
equalities
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we find the operator correspondence between (13) and (21)
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Based  on  the  correspondence  (24)  and  (25),  and 
considering  the  interaction  energy,  we  compare  the 
system energy between the states  ΨN and  ΨLN  using 
(15), (16), (22) and (23)

∆Et = (ELN0)+∆ELN) – (EN0+∆EN )=
= - [(N2 – 3N)(m-1)-2] ħω/4 (26)

∆Et becomes negative when m≥2 and N≥4.
In the hitherto found new type of high temperature 

superconductors [1,2], the filling factor νs of carriers per 
1 molecular unit may be νs≥1. On the other hand the 
ground Laughlin state of the single electron (or fermion) 
system appears at the filling factor νs=1/m=1/3,1/5, ... . 
Therefore it may be difficult to find there the possibility 
of stability of Laughlin state. The situation is different 
in  case of  electron pair  (or  boson) system, where the 
ground Laughlin state appears at the pair filling factor ν
p=1/2, 1/4, 1/6, ...  . Suppose an 2D electron system of νs 

=1. In pairing the system has pair filling factor νp =1/2 
where m=2, and where ∆Et < 0 when N≥4.Of course we 
must consider the "Hubbard energy" increase EH ≈ 10eV 
per 1 pair. However the energy increase is overcome by 
the energy decrease given by (26) when the pair number 
Np of the 2D system is large enough to satisfy

Np≥3+4EH/ ħω=Npc. (27)
The pair oscillation frequency is supposed to be ωp=2ω. 
When we consider the general rule that the system with 
even number of electrons per 1 molecular unit becomes 
insulator,  we must  say that  the Laughlin state can be 
realized in a 2D system with odd number of electrons 
(or holes) per 1 molecular unit if (27) is satisfied.

III. SUPERFLUIDITY
It is known that superfluidity is one of the properties 

of the system in the coherent state  ΘΨ  with definite 
phase Θ expressed by

∑ ∞

=Θ ΨΘ=Ψ
0

)exp(
N NN iNw  (28)

where NΨ is the particle-number-definite macroscopic 
quantum state with N particles, and 

wN= 〈N〉N exp(-〈N〉)/N!
where 〈N〉 is the mean particle number. Laughlin state Ψ
′LN is  a  particle-number-definite  macroscopic quantum 
state  NΨ .  Therefore  a  coherent  state  may  be 
composed by the superposition of many Laughlin states 
with different N. The least uncertainty condition 
∆N∆Θ = ∆p∆r/ħ = 1/2 is satisfied in the coherent state, 
realizing the minimization of kinetic and potential zero-
point  energy.  Therefore  we  can  expect  the  stable 
appearance of a superfluidity based on the coherent state 
in the situation where many Laughlin states of νp=1/2 
with  different  pair  number  Np appear  as  quantum 
fluctuation.

Such a fluctuating situation may be expected in the 
multilayer  crystal  of  2D  circular  molecular  networks 
when the filling factor deviates from νp = 1/2 by a small 
quantity  ∆ν by carrier  doping.  In  case of  mono-layer 
system, the deviation ∆ν makes quasiparticle excitations 
without  N fluctuation.  In  multilayer  system, however, 
the existence of inter-layer particle  exchange leads  to 

the N fluctuation, the strength of which is determined by 
the inter-layer tunneling probability.

It is well known in the experiment of quantum Hall 
effect  that  the  localization  causes  "plateau"  where  a 
Laughlin ground state is stabilized over a finite width of 
filling factor. Therefore to observe ideal superfluidity, 
one  may  completely  remove  the  localization  using 
"ideal" multilayer crystal and set the filling factor in the 
de viation νp =  1/2±∆ν.  If  one  increases  localization 
keeping the filling factor νp = 1/2±∆ν starting from the 
ideal  state,  the  macroscopic  quantum  state  may 
smoothly  change  from  superfluidity  type  ΘΨ to 

Laughlin  type  NΨ ,  so  long  as  the  localization 

potential is not too strong to destroy even NΨ .
Equating l = r0, we find

ħω = ħ2/M0
2

0r (29)
where  r0  is the effective radius of a molecular unit. In 
order to consider the thermal effect, we use the thermal 
decoherence length

lth = η ħνF/kBT = η(ħ2/kBTM0)(3π2n)1/3 (30)

where  η is a coefficient of 1≥η≥1/π. Fermi velocity is 
supposed to be given by 3D free carrier model as  νF = 
(ħ/M0)(3π2n)1/3 for  3D  carrier  density  n.  Quantum 
coherence may extend over the area lth², where the pair 
number is

∆Nth = (1/2π0
2

0r )lth
2 (31)

Supposing the fluctuating appearance of  the  Laughlin 
states  when  ∆Nth exceed  Npc given  by  (27),  we  can 
determine  the  threshold  temperature  of  the  onset  of 
superfluidity using (29)-(31)

Tc = (η ħνF/2 π kBr0)/ ω/25.1 HE+ (32)

In fcc C60 with 3 holes in a molecular unit, where we 
suppose that 2 holes make filled band and one hole is in 
carrier state. Then we find Tc≈70-200 K from (32) with 
νF≈4×105m/s  r0≈0.5nm and ħω≈0.3eV. The value is in 
the same order as Tc≈52-117 K reported in Ref. 1. With 
respect to the MgB2, the field made by Mg²+ disturbs the 
formation of stable potential valley for π electrons in the 
branches of the 2D hexagon network. Concerning hole 
carriers  on  the  network,  however,  the  repulsive  Mg²+ 

field makes stable potential valley just on the branch. A 
hole (a defect of  σ electron) may appear in a hexagon 
neighboring the hexagon where new π electron creation 
is made through the lowering of π electron potential via 
attractive  Mg²+ field.  In  order  to  reduce  zero-point 
energy, the hole may take an outside larger orbit around 
the  hexagon  of the  new π electron,  feeling  lattice 
potential valley and with some attraction from the newly 
created  electron.  Such  hole  state  may  be  realized  at 
auto-doping ratio  β = 1/13 (1 hole per  13 hexagons). 
Concerning the 2D system of the doped holes, we find ν
F≈4.4×105m/s,  r0≈0.62nm,  ħω/e≈0.2eV and get  Tc≈50-
150 K which  is  in  the  same order  to  the  observation 
39 K.
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IV. DISCUSSION AND CONCLUSION
We propose a new model of  the high temperature 

superconductivity  in  crystal  with  2D  plane,  which  is 
composed of the planar connection of circular molecular 
orbits.  Assuming  the  semi-localization  of  carriers  in 
each molecular unit, we find the following. (i) boson (or 
carrier-pair)  type  Laughlin  state  with  filling  factor ν
p=1/2 is the most stable state. (ii) By the superposition 
of  many  Laughlin  states,  a  coherent  state  with 
superfluidity  appears  in  "good"  crystal  when νp=1/2. 
(iii)  An  estimation  of  the  superfluidity  threshold 
temperature gives  Tc≈70-200 K for fcc C60, and  Tc≈50-
150 K for  MgB2,  which  are  respectively  in  the  same 
order  to  the  reported  onset  temperature  of 
superconductivity 52-117 K and 39 K.

It must be noted that there exists some discrepancy 
between  the  assumption  used  in  the  model  and  the 
crystal property of the referred experiments. In case of 
fcc C60,  only the circular molecular orbits (||xy) which 
are in  parallel  with the conduction plane  is  effective, 
and other orbits (||yz and ||zx) have no contribution to the 
model. If hole carrier is stabilized in ||xy orbit, electron 
carrier must be stabilized in  ||yz and/or  ||zx orbits. It is 
interesting  that  Tc≈52-117 K  is  observed  in  3  hole 
doping  per  1  molecule,  but  lower  Tc in  3  electron 
doping.  Concerning  MgB2,  we  now have  not  enough 
information of its carrier state. Anyway it is difficult in 
the attractive field  of  Mg2+ to  consider  stable  annular 
potential well for the graphite-like π electrons existing 
on the hexagon network branches. In order to apply our 
model, we must suppose the existence of localized holes 
at the self-doping ratio  β=1/13.  However the potential 
well of a localized hole has connection paths between 
the  neighboring  wells, which  results  in  the 
incompleteness of "semi-localization" condition.

We must also note that the possibility of the paired 
superfluid  state  in  FQHE  has  been  theoretically 
proposed in the case of the filling factor  νS with even 
denominator.  Greiter  et  al.  [8]  discussed  the  p-wave 
pairing between the complex fermions in Pfaffian state 
via interaction mediated by vector potential at  νS=1/2, 
where the solution of the Hamiltonian of the system in 
BCS approximation leads to a gap equation having large 
pairing energy at relative angular momentum Lz=h. Ho 
pointed out [9] that the Pfaffian state and the Ψ331 state 
respectively  correspond  to  A  phase  and  A1 phase  in 
superfluid  3He [10].  Ψ331 may be the ground state of 2 
layer FQHE system with νS=1/4 in each layer when the 
inter-layer distance ds≅1.5l [11]. Morf pointed out [12] 
that  the  ground  state  of  coulomb-interacting  νS=5/2 
system is a spin-polarized state with large overlapping 
with Pfaffian (or pairing) state.

These  pairing  states  are  interesting  and  deserve 
consideration with respect to the electronic state of the 

new trend high Tc superconductors in multi-layer crystal 
with interconnected networks of 2D circular molecular 
orbits. We suppose, however, that the effective filling 
factor  of  the  superconductors  is  νs≅1  which  may 
exclude the possibility of above pairing states.
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