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A model is proposed for a one-dimensional dielectric or elastic superlattice (SL) that relatively simply describes 
the frequency spectrum of electromagnetic or acoustic waves. The band frequency spectrum is reduced to mini-
bands contracting with increasing frequency. A procedure is suggested for obtaining local states near a defect in a 
SL, and the simplest of these states is described. Conditions for the initiation of Bloch oscillations of a wave packet 
in a SL are discussed.
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1. By  a  photonic  crystal  is  meant  a  macroscopic 
periodic structure composed of two spatially alternating 
dielectrics differing in dielectric constants (velocities of 
electromagnetic  waves)  [1].  Analogously,  by  a 
phononic crystal or acoustic superlattice (SL) is meant a 
periodic structure composed of  two alternating elastic 
materials  differing in  elastic  moduli  and velocities  of 
sound (the general acoustics theory of layered media is 
expounded in [2], and a useful bibliography on acoustic 
SLs is given in one of the last publications [3]). A great 
number of publications are devoted to studying the fre-
quency spectrum of SLs. It is clear that, in the general 
case, this spectrum is extremely complicated and con-
tains a system of both a great number of eigenfrequency 
bands and gaps corresponding to forbidden frequencies 
of  eigenmodes.  In  order  to  characterize  such  spectra 
qualitatively  and  to  illustrate  their  main  quantitative 
features, it would be appropriate to use simple models 
that allow for these features. The well-known ID Kro-
nig-Penney model [4] may serve as an example of such 
a  model  in  the  electronic  theory  of  crystals.  In  this 
work, a model of a SL is proposed that provides an ana-
lytical  description  of  the  high-frequency  part  of  its 
spectrum and suggests a possible implementation of an 
interesting acoustic SL.

Consider a SL in the form of alternating plane-par-
allel layers of two materials differing in either elastic or 
dielectric (depending on the implementation of interest) 
characteristics. Denote the layer thicknesses by  d1 and 
d2; then, the SL period equals d = d1 + d2. The elastic or 
electromagnetic  field  inside  each  material,  which  is 
assumed  to  be  isotropic,  is  described  by  the  wave 
equation 
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where cα is the wave velocity in the layer of the α type. 
The velocity of light in a dielectric equals cα= c/ ε (c 
is  the  velocity  of  light  in  free  space),  and that  in  an 
elastic  medium  equals  cα=  αα ρµ / ;  εα,  μα and  ρα 

(α=1,2)  are  dielectric  constants,1 elastic  moduli,  and 
mass densities, respectively.

Consider  a  wave  propagating  along  the  X axis 
perpendicular to the layers. In this case, waves of two 
possible polarizations do not interact, and it is possible 
to study scalar fields u(α) (α = 1, 2).

The  standard  boundary  conditions  will  be 
formulated  as  applied  to  the  acoustic  problem.  The 
displacements  u(α) and stresses σα = μα(∂u(α)/  ∂x) at the 
layer  boundaries  will  be  considered  continuous.  It  is 
known that, by virtue of the periodicity of a structure 
with a period of d, eigenmodes can be characterized by 
a quasi-wave number  k, considering that the field in a 
unit cell with the number n takes the form

un(x) = un(x-nd)eiknd.  (2)

The dispersion equations in this problem were obtained 
by  Rytov  for  both  electromagnetic  field  [5]  and 
acoustics [6]

cos(kd) = cos(k1d1) cos(k2d2)  
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where  k1 =  ω/c1 and  k2 =  ω/c2  (ω is  frequency). 
Equation  (3)  determines  the  frequency  as  an  implicit 
function  of  the  quasi-wave  number.  It  allows  the 

1 Because I will be interested mainly in narrow frequency bands, the 
frequency dispersion of e can be neglected, and e can be related to the 
corresponding frequencies.
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spectrum of long-wavelength vibrations  (kd<< 1) to be 
described  readily,  for  which  a  sound  spectrum  with 
averaged  elastic  moduli  <µ> and  density  <ρ> is 
naturally obtained. It was shown [6] that

<ρ>d = ρ1d1+ρ2d2;   d/<µ> =  d1/µ1+ d2/µ2. (4)

The relationship for <µ>, which contains only dα/µα 

ratios, is curious. A limiting case that is commonly of 
no interest in the dynamics of a quantum particle can be 
considered based on this relationship. Consider the limit 

d2→0 and µ2→0 at d2/µ2 = P = const.2 

In this case, d1→d 
 and k2d2 = ωd2/c2 = 2222 µωρ dd →0 

therefore, Eq. (3) is reduced to the following equation:

cos(kd) = cos(k1d-(1/2)P((ρ2µ1/ρ1d)(k1d))sink1d  (5)

It  is  useful  to  note  that  the  dispersion  law  (Eq. 5) 
coresponds  to  an  elastic  SL  composed  of  a  chain  of 
regularly repeating elements of length d with parameters 
µ1 and  c1.  The  following  boundary  conditions  are 
fulfilled  at  their  joints:  (1)  continuity  of  the  normal 
stresses [σ] +

−  = 0, which is equivalent to [∂u/ ∂x] +
−  = 0 

and (2) occurrence of a jump of displacements at a soft 
inter-layer determined by the stresses at the joint

[u] +
− = Mσ ≡ µ1M(∂u/ ∂x),   (6)

where M = P(ρ1/ρ2). 
A set of such boundary conditions at a fixed  M is 

used in describing capillary phenomena in solids [7] or 
planar  defects  in  crystals  [8].  If  the  parameter  M is 
small,  the  system  in  hands  is  reduced  to  a  periodic 
sequence of elastic sections weakly bound together. A 
chain of piezoelectric sections bound together by thin 
vacuum  interlayers  may  serve,  for  example,  as  a 
possible  implementation  of  such  a  system.  Then,  the 
coupling  of  elastic  vibrations  in  neighboring  sections 
would  be  accomplished  through  electromagnetic  os-
cillations in vacuum gaps.

To illustrate the distribution of roots ω = ω(k) of Eq. 
(5), this equation will be represented in the form

coskd = cosz-Qzsinz,   (7)

where z = k1d = ωd/c1 and Q = P(ρ2µ1/2ρ1d). Consider 
the graphical construction in Fig. 1. The figure shows a 
plot of the right-hand side of Eq. (7). When it runs over 
values between ±1, the roots of the equation run over 

2 A more general case d2→0  and c2→0 at d2/c2= const could be 
considered; however, no new results arise in this case.

values within intervals marked off on the abscissa axis.

Fig. 1.  Graphical  solution  of  Eq. (7).  
Eigenfrequency bands are shown in heavy lines on the z  
axis

Note  that  the  allowed frequencies  are localized in 
contracting intervals at values k1d = ±mπ, where m is a 
large integer, as z increases.3 Under the condition that 
m2Q>>1, the dispersion laws in these intervals take the 
form
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where (ω0 = πc/d and Ω. = c/πQd. It is clear that Eq. (8) 
gives the size quantization phonon spectrum in a layer 
of  thickness  d, whose  levels  are  split  into  minibands 
because of low "transparency" of interlayer boundaries. 
An  attempt  to  analyze  the  character  of  the  SL  band 
spectrum was made in [9], where the dispersion relation 
(Eq. (3))  was  derived  once  again.  However,  their 
analysis is  not  satisfactory in a  limiting case close to 
that  considered  in  this  work,  because  it  leads  to  the 
conclusion that the miniband widths do not vary with 
increasing frequency.

Consider Eq. (8) from another point of view: Eq. (8) 
describes the spectrum of a pseudo-quantum particle for 
which the Schrödinger equation within the tight-binding 
model takes the form (for m = 2p)

i∂ψ/∂t = mω0ψn-(Ω/m)(2ψn-ψn+1-ψn-1) (9)

i∂ψ/∂t = mω0ψn+(Ω/2m)(2ψn+ψn+1+ψn-1)   (9a)

Actually,  Eqs.  (9)  and  (9a)  are  equations  for  the 
envelop curve of SL vibrations taken at discrete points 
(at joints). As usual, the order of derivative with respect 
to  time  decreases  in  such  equations.  These  equations 
describe  analytically  the  dynamics  of  a  wave  packet 
corresponding to the allowable high frequencies. Using 
the explicit form of the dispersion laws (Eq. (8)) and 
3  The contraction of bands with increasing frequency was also noted 
previously; in particular, this was mentioned in [3].
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simple Eqs.  (8)  and (9),  the passage of  wave packets 
through  the  system  under  study  can  be  described 
readily, and explicit relationships can be proposed for 
comparison with possible experimental results.

Nonlinear effects in optical SLs associated with the 
dependence  of  the  refraction  coefficient  (that  is,  the 
velocity  of  light  c and  the  parameter  ω0)  or  the 
characteristic of joints Q on the field strength ψn can be 
readily taken into account using Eqs. (9) and (9a) much 
as it was done in [10] when describing optical solitons 
in such SLs.

The frequencies of forbidden bands correspond to
displacements of the type un~e±knd (when k = iκ) or un~(-
1)ne±knd (when  k  = iκ+π),  which  drop  (grow)  with 
increasing  displacement  number  n. The  frequency 
dependence of the parameter K for solutions of the first 
type can be found from the relationship

coshκd = cosz-Qzsinz >1,        (10)

and,  for  solutions  of  the  second  type,  from  the 
relationship

-coshκd = cosz-Qzsinz<-1  (10a)

It is clear that such states have a physical meaning 
only  in  the  x semiaxis  under  the  condition  that  a 
solution  vanishing  at  infinity  and  corresponding  to 
certain  boundary  conditions  at  the  origin  is  selected. 
Solutions of the first and the second types correspond to 
frequencies in the intervals 

(2p –1)π < z < 2pπ 

and 
2pπ < z < (2p + 1)π, respectively, (see Fig. 1).
The  necessity  of  using  exponentially  decreasing 

solutions  arises  in  describing  displacements  in  the 
vicinity of a local SL defect.

2. Assume that the boundary conditions at one of the 
joints (let its number n =0) differ from those described 
above, or more specifically,  these conditions differ in 
the  parameter  M:  M*  ≠ M. The  local  vibration 
frequency  is  essentially  determined  by  the  difference 
M*-M  =  ξM Calculations  show  that  the  boundary 
condition at the defect leads to the relationship

sinhκd = ξQzsinz  (11)

which, along with Eq. (10) or (l0a) (depending on the 
sign  ξ)  gives the local  vibration frequency.  The local 
frequencies are determined by the intersection points of 
plots of the right-hand sides of Eqs. (10) and (l0a) with 
a plot of the function 

f(z) = z2sinh1 +  = [1 + (ξQz)2sin2z]1/2,

which is  determined by Eq. (11).  Because  κ > 0,  the 
solutions  correspond  to  the  frequencies  (values  of  z) 
determined by the equation (see Fig. 2)

Fig. 2.  Determining  a  series  of  roots  of  Eq.(12) 
graphically: roots z1, z2, ... and z1, z3 ... correspond to 
two types of vibrations

cosz-Qzsinz =   
=sgn{ξQzsinz} zQz 22 sin)(1 ξ+ .     (12)

The  local  vibration  frequencies  corresponding  to 
different signs of  ξ are located in alternating intervals 
between z =:2pπ and z = (2p +1)π (p = 0, 1, 2, ...):ω = 
ωs.,  s = 1, 2, 3, .... The corresponding solutions can be 
presented in the standard form un(x,t) = wn(x)exp{-iωt},
 where  wn(x)   is an  odd  function  w-n(-x)  =  wn(x) of  the 
following form (see Fig. 3):

Fig. 3.  Coordinate dependence of displacements of  
a  SL  in  the  vicinity  of  a  defect  for  two  types  of  
vibrations  consistent  with  roots  in  Fig.  2:  (a)  
corresponds to z0,  z2 ...  roots (antiphase vibrations of  
unit  cells) and (b)  corresponds to z1,  z3,  ...  roots (in-
phase vibrations of unit cells)
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nd<x< (n+1) d,   n≥1;

where  θs is  the  constant  phase  corresponding  to  the 
eigenfrequency  ωs.  The  function  w1(ξ)  depends 
harmonically on the argument and can be found easily.

In  this  case,  the  local  vibrations  for  which 
(2p-1)π<z<2pπ (points z2 and z4 in Fig. 2) are described 
by  a  monotonic  function  decreasing  with  increasing 
number  of  the  unit  cell,  and  the  vibrations  with 
frequencies 

(2p-1)π<z<2pπ 
(points  z1 and  z3 in Fig. 2) are described by a function 
proportional  to  (-l)ne-κnd.  It  is  essential  that  a  local 
vibration may arise at any sign of the perturbation ξ.

A local vibration with an even eigenfunction cannot 
arise at a defect localized at one boundary at any sign of 
ξ. Assume that this is a joint with n = 0; at this joint,

[u] +
−  = 0 and σ0 = 0;

therefore, an excitation in the form of a standing wave 
with  an  even  dependence  on  the  x  coordinate  is  not 
sensitive to the value of the parameter Q at the joint n = 
0 and does not differ from the vibration of the free SL 
boundary passing along this joint.

The  free  SL  boundary  corresponds  to  a  section 
through  the  joint  n  = 0.  This  is  equivalent  to  the 
condition σ0 = 0, which is obtained in the given model 
at ξ = ∞ (M* = ∞).

It follows from Eq. (13) that only uniform vibrations 
(κ = 0) are possible in this case at frequencies 

ω = (c/d)πm, m = 0, 1, 2, ....

Hence, no localized wave exists at the free SL end. 
This  means  that  vibrations  of  the  even  type  are 
impossible  if  the  defect  is  lumped at  one  joint.  Such 
localized excitations arise upon variation (perturbation) 
of the parameter M at least at two neighboring joints. As 
in the case of an odd solution, the regions of occurrence 
of  such  local  vibrations  with  in-phase  and  antiphase 
displacements  of  neighboring  unit  cells  alternate, 
depending on the sign of ξ, with the period ∆z = π.

3.  It  is  interesting  to  discuss  the  possibility  of 
occurrence  and  experimental  observation  of  Bloch 
oscillations  of  a  wave  packet  in  the  SL  under 
consideration. Bloch oscillations of an optical pulse in a 
different  situation  were  described  and  observed 
experimentally [11,12]. Therefore, this discussion is not 
groundless.
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