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The regular  method for  construction of  kinetic  equations of  long-wave fluctuation theory is  developed  in a 
microscopic  approach  on  the  base  of  generalization  of  the  kinetic  Bogolyubov  theory.  The  transition  to  the 
hydrodynamic  theory  of  long-wave  fluctuations  is  investigated  in  detail.  The  derived  hydrodynamic  equations 
describe a turbulent liquid state. The concept of nonequilibrium entropy for fluctuating systems is introduced. The 
H-theorem is proved.
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INTRODUCTION
It is well known [1-3] that for the evolution process 

of  a  system at  times t>>τr (a  hydrodynamic evolution 
stage;  τr   is the relaxation time) the states in which the 
correlation  radius  of  many-particles  distribution 
functions  increases  with time (long-wave fluctuations) 
inevitably  appear.  In  this  connection  it  is  of  great 
interest  to  construct  a  long  fluctuation  kinetic  theory 
which must  underlie  a  long  fluctuation  hydrodynamic 
theory  just  as  the  usual  kinetic  theory  underlies 
hydrodynamics. 

A set  of works (see,  for example [4,5],  etc.)  deals 
with the long fluctuation kinetic theory. In the works the 
main  attention  was  focused  on  the  derivation  of  the 
specific  equations  for  a  one-particle  and  a  binary 
correlation function in a certain approximation. In such 
an approach the basic ideas of the kinetic Bogolyubov 
theory  [6]  (the  functional  hypothesis;  the  boundary 
conditions  problem  representing  a  formulation  of  the 
functional  hypothesis  in  zeroth-order  of  perturbation 
theory; the principle of spatial weakening correlations) 
used to be lost. Besides, the ideas did not seem to work 
in the long fluctuation theory. One of the basic objects 
of the present work is to show that the long fluctuation 
kinetic theory not only agrees with the general ideas of 
the kinetic Bogolyubov theory but needs the latter for its 
specific applications.

1. METHOD OF REDUCED 
DESCRIPTION OF LONG NON-

EQUILIBRIUM FLUCTUATIONS
In studying the kinetics of long-wave fluctuations it 

is  necessary  to  deal  with  systems  having  a  large 
correlation  radius  increasing  with  time  so  that  the 
assumption forming the basis for [6] about rapid decays 
of correlations at |xi -  xj|≥r0 (r0 is a particle interaction 
radius) is not fulfilled. Therefore, for such systems the 
formalism of [6] has to be modified in a certain way.

With  the  purpose  of  formulation  of  modified 
functional hypothesis we introduce smoothed s-particle 

distribution  functions  fS(x1,...,xS;t)  which  are  obtained 
from  usual  many-particle  distribution  functions 
fS(x1,...,xS;t) in going to the asymptotic domain |xi - xj|≥
r0,

( ) ( ) ≡ →
> >−

t;x,...,xft;x,...,xf sSr||sS
ji

11
0xx

( )t;x,...,xPf sS 1≡         (1.1)

(here xi≡(xi,pi) is the coordinate of the phase point of the 
i-th particle, i = 1,2,...,S; P is a symbol of the smoothing 
operation).

We explain the concept of smoothing operation in 
detail. If the initial many-particle distribution functions 
have been smooth (on the scale of r0) functions of xi (i = 
1,2,...,S), then on account of the temporal evolution the 
functions fS(x1,...,xS;t) will have at |xi - xj|<r0, (i,j = 1,…
,S)  a  complex  irregular  character  displaying  irregular 
properties on scale r0 of the potential energy of the S-
particle  interaction.  The  trend  of  this  irregular 
dependence  can  be  shown by way of  example  of  the 
function  f(x)  (x  stands  for  |xi-xj|)  having  two  spatial 
scales  of  variation,  f(x)  =  f(x/r0,x/L)  (r0 is  the 
characteristic microscopic scale of the variation of f(x) 
on small distances, L>>r0 is a characteristic macroscopic 
scale  of  the  variation  on  large  distances).  It  is  the 
function  which  one  deals  with  solving  the  BBGYK 
equation chain (). Then the smoothing operation of the 
function f(x) is defined by the formula

( ) ( ) 




 ∞≡=

L
x,fxPfxf , 12 =P       (1.2)

According  to  the  reduced  description  method  of 
Bogolyubov [6] we will consider that a system state is 
completely  described  by  smoothed  many-particle 
distribution  functions  at  times  t>>τ0 (τ0 ≈ r0/v  is  the 
characterization time; v is the average particle velocity). 
It  means  that  the  exact  many-particle  distribution 
functions fS will be dependent on time and initial many-
particle distribution functions only by smoothed many-
particle distribution functions at t>>τ0,
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( )  →
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0

 →
τ> > (1.3)

Thus although the distribution functions fS(x1,...,xS;t) 
do  depend,  generally  speaking,  on  the  initial  many-
particle distribution functions fS(x1,...,xS;0), at times well 
in  excess  of  τ0 the  dependence  is  simplified  and 
contained only functions f1(t), f2(t), ..., the functionals of 
which become the quantities of fS.

In this sense the functionals (1.3) are universal and 
independent of the pattern of initial conditions for many-
particle distribution functions.

The considered functionals (1.3) in accordance with 
(1.1) have to satisfy the following relationship:
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> >− 0211 r||SS
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xx
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,...tf,tf;x,...,xPf SSr|| ji 211
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( )t;x,...,xf SS 1≡  (1.4)
We will study system dynamics having proceeded 

from the BBGYK equation chain for the many-particle 
distribution functions
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Here operators ΛS and RS are defined by formulae
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the operator RS transforms a function of a phase space of 
S+1  particles  in  one  of  a  phase  space  of  s  particle), 
where HS

0=∑1≤i≤SH(xl), V=∑1≤i<j≤SV(xl-xj), H(xl)=pl
2/2m is 

the  free  particle  Hamiltonian  and  Vij=V(xl-xj)  is  the 
Hamiltonian  of  pair  interaction  between particles  (the 
symbol {,} denotes Poisson's brackets).

It  is  easy to  obtain an equation of  motion for  the 
smoothed  distribution  functions  fS from  the  equation 
chain for many-particle  distribution functions.  For this 
purpose< going in (1.5) to the asymptotic region |xi-xj|
>>r0 (i,j = 1,...,S) and allowing for 

( ) ,V
||ji

ji
0 →−

∞→− xx
xx

we have accordingly (1.2)

,Lf
t SSSS LL ≡+=

∂
∂ 0

,SSSSSS fPRL,fi 1
00

+=Λ−=L              (1.7)
(we took into account that P{VS,fS}=0).

A further problem will be to find a solution of the 
equation chain (1.5) in the form fS=fS(x1,...,xS;f1,f2,...) not 

researching  the  initial  evolution  stage.  To  obtain  a 
unique  solution  of  the  problem we formulate  for  the 
functionals (1.3)  boundary conditions which in accord 
with (1.4), (1.6) take the form

( ) ( ) ( ) ( ) ( ) ,...)tfS,tfS;x,...,x(fS SSS 2
0
21

0
11

0 τ−τ−τ

( ).t;x,...,xf SS 1 →
∞→τ             (1.8)

Here SS
0(τ)=exp(iτΛS

0).
To obtain the equation of motion for the parameters 

fS(t)  of  reduced  description  it  is  necessary (see  (1.7), 
(1.8))  to  find  an  apparent  form  of  the  functionals 
fS(x1,...,xS;f1,f2,...)  in  a  certain  approximation,  i.e.  to 
solve Eq. (1.5) with allowance for (1.3), (1.8). In such 
cases the usual ways of calculation are iterations over a 
weak interaction (for an arbitrary particle density) or a 
low  density  of  particles  (for  an  arbitrary  interaction 
between particles provided that the interaction does not 
lead to the production of bound states of particles).

2. GENERAL KINETIC EQUATION
OF LONG FLUCTUATION THEORY

Introduce  the  generating  functional  of  smoothed 
many-particle distribution functions

( ) += 1fu;F                                       (2.1)
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A functional G(u;g) connected with the functional F(u;f) 
by the relationship

( ) ( )]gu,Gexpgu,F [=    (2.2)

is  the  generating  functional  of  smoothed  correlation 
functions gS(x1,...,xS),

( ) =g;uG                                         (2.3)
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where g1 ≡ f. Represent the generating functional G(u;g) 
in the form

( ) ( ) ( ) ( )∫ += ,g;uxfxdxug;uG G        (2.4)

where  G(u;g) is the generating functional of the proper 
correlation function

( ) =g;uG                                              (2.5)
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The kinetic equation for the one-particle distribution 
function f(x)  and generating functional  G(u;g)  is  to be 
produced in the form
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where G(δ/δf;g) is generating functional G(u;g) in which 
an  operation  of  functional  differentiation  over  f(x)  is 
substituted instead of a functional argument u(x). It is 
the equations (2.6)  which are general equations of the 
theory of long nonequilibrium fluctuations. As is known, 
a usual kinetic equation for the one-particle distribution 
function takes the form 

( ) ( ) ( ).f;xLxf
mt

xf =
∂

∂+
∂

∂
x

p
                      (2.7)

We  see  that  the  dynamics  of  long  nonequilibrium 
fluctuations  is  determined  by  the  functional  L(x;f)  - 
collision  integral  of  Bogolyubov's  kinetic  theory.  It 
agrees  with  Onsager's  principle  according  to  which 
macroscopic (long) fluctuations evolve in time with laws 
of  macroscopic  physics;  such  a  law  of  macroscopic 
physics in case of kinetic theory is Eq. (2.7).

The  second  of  Eqs. (2.6)  admits  the  solution  G=0. 
With that,  the equations  becomes (2.7).  However,  the 
solution  G=0  corresponds  to  the  very  special  initial 
conditions gS|t=0=0 (S=2,3...). If at the initial moment the 
correlation functions  g2(x1,x2)=f(x1)f(x2)ξ (x1,x2),...,  are 
small in comparison with f(x1)f(x2) (|ξ (x1,x2)|<<1), then 
the one-particle distribution function f(x) exponentially 
decays  up  to  times  τ0=τrln[1/|ξ (x1,x2)|]  (τr=l/v  is 
relaxation time, l is a mean free path) according to the 
standard  kinetic  equation  (2.7).The  general  kinetic 
equations (2.6) are decisive at t≥τ0.

We note that the functional hypothesis in the form 
(1.3)was  decisive  for  the  construction  of  the  long 
fluctuation theory. However, for the construction of the 
usual  kinetic  theory,  in  which  only  the  one-particle 
distribution  function  is  a  parameter  of  the  reduced 
description, the functional hypothesis is formulated as 

( ) ( )( ) ,t,'xf;x,...,xft;x,...,xf SStSS 11
0

 →
τ> > (2.8)

where  fS(x1,...,xS;f)  are  universal  functionals  of  one-
particle  distribution  functions.  In  our  opinion  the 
functional hypothesis (1.3) describes a general situation 
corresponding  to  arbitrary  initial  conditions  while  the 
hypothesis in the form (2.8) is not valid in the general 
case and corresponds to very special initial conditions 
which  are  described  by  the  universal  functionals 
fS(x1,...,xS;f)  where  an  arbitrary  initial  one-particle 
distribution function f(x;0) figures as f(x):

( ) ( )( ).;'xf;x,...,xf;x,...,xf SSSS 00 11 =

It should be noted as well that stationary solutions of 
Eqs. (2.6) for a statistical equilibrium state take the form

0320 ff,...,,S,g S === .

It means there are no long fluctuations in the statistical 
equilibrium  state.  Short-wave  fluctuations  in  the 
equilibrium  state  are  determined  by  the  functionals 
fS(x1,...,xS;f) in which the Maxwell distribution f0 has to 
be  substituted  for  a  functional  argument  f(x).  As  is 
shown  in  [8],  many-particle  distribution  functions 
obtained  by  such  way  completely  coincide  with  the 
many-particle distribution Gibbs' functions.

3. GENERAL HYDRODYNAMIC EQUATION 
OF LONG FLUCTUATION THEORY

Smoothed hydrodynamic averages of products of the 
additive motion integral,

( ) =ζ αα t;,..., S... S
xx11                    (3.1)

( ) ( ) ( )∫ ∫ αα ζζ= ,t;x,...,xf...d...d SSSS S 111 1
pppp

will be denoted by ζa(t) (here ζα(p) (α=0,i,4;i=1,2,3) are 
additive integral of motion; ζ0(p)=p2/2m is an energy, ζ
i(p)=pi is a momentum, ζ4(p)=m is a particle mass). It is 
easy to see that the generating functional F(v; ζa) of the 
smoothed  hydrodynamic  averages  ζα1...αS(x1,...,xS)  is 
connected with the generating functional  F(u;f)  of the 
smoothed many-particle  distribution function  fS by the 
formula

( ) ( ) ( ) ( ) ==ζ
αα ζ= pvxua f;uF;vF         (3.2)
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1
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xxxx

( )t;,..., S... S
xx11 ααζ×

(it  has  extended  the  summation  over  repeated  index 
"α").  The  functional  G(v;ξa)  connected  with  the 
functional F(v; ζa) by the relationship

( ) ( )[ ]av;Gexp ξ=ς a;vF                       (3.3)
is  the  generating  functional  of  the  hydrodynamic 
correlation functions ξα1...αS(x1,...,xS),

( ) ( ) ( ) ×=ξ ∑ ∫ ∫
∞

=
ααα

1
11 1

1

S
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;vG xxxx

( )t;,..., S... S
xx11 ααξ× ,                          (3.4)

which  will  be  denoted  by  ξa(t)  (ξα(x)≡ζα(x)=∫dpζα

(p)f1(x) are densities of additive motion integrals). The 
generating  functional  G(u;g)  of  the  proper  correlation 
function ξα1...αS(x1,...,xS;t), S≥2 similarly to (2.5) have the 
form

( ) ( ) ( ) ×=ξ ∑ ∫ ∫
∞

=
ααα

2
11 1

1

S
SS S

v...vd...d
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;v xxxxG

( )t;,..., S... S
xx11 ααξ× ,                            (3.5)

To  obtain  the  closed  equation  of  motion  for  the 
generating functional F(v; ζa) of hydrodynamic averages 
(or  equations  of  motions  for  the  densities  of  additive 
motion integrals ζα(x,t) and generating functional G(u;g) 
of the proper correlation function  ξα1...αS(x1,...,xS;t)) it is 
necessary  to  find  a  solution  of  Eqs.(2.6)  in  a 
hydrodynamic  approximation.  With  this  purpose  we 
used the functional hypothesis 

( ) ( )( ) ,t;x,...,xft;x,...,xf aSStSS r
ζ →

τ> > 11  

or
( )( ) ( )( )( ),tf;uFtf;uF at r

ζ →
τ> >      (3.6)

which  has  a  simple  physical  sense:  according  to  the 
method of reduced description it is considered that at a 
moment  t>>τr (τr is  a  relaxation  time)  for  the 
hydrodynamic  stage  of  evolution  a  system  state  is 
completely  described  by  densities  ζα(x,t)  of  additive 
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motion integrals and smoothed correlation functions of 
hydrodynamic parameters  ξα1...αS(x1,...,xS;t)) at the same 
moment.

For  the  hydrodynamic  stage  of  evolution  of  the 
system  the  specific  sizes  of  spatial  inhomogeneities 
(over all spatial coordinates of correlation functions) are 
large  in  comparison  with  a  mean  free  particle  path, 
which develops the theory of perturbations over spatial 
gradients of reduced description parameters.

Perturbation theory is developed to solve equations 
for  kinetics  of  long-wave  fluctuations.  This  theory  is 
analogous to the Chapman-Enscog procedure which is 
used  to  derive  equations  of  usual  (nonfluctuating) 
hydrodynamics proceeding from usual kinetic equation. 
As  a  result  the  following  general  equations  for 
fluctuation hydrodynamics can be derived
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In  the  expression  (3.8)  the  current  densities  of 

hydrodynamic  parameters  ζαk are  determined  by  the 
formula

( )( ) ( ) ( ) ,xf
m
p

d k
k ∫ αα ζ=ζζ 0ppx

where  f0(x)  is  local-equilibrium  Maxwell  distribution 
and  the  quantity  ηαγ;ik(ζ(x))  determines  dissipative 
kinetic  coefficients  (see  in  connection  with  this,  for 
example, [7]).

We emphasize that at the fluctuation hydrodynamic 
stage of evolution the system dynamics is determined by 
the  unique  quantity  Tα(x;t)  (see  (3.8))  describing  the 
usual (without fluctuations) hydrodynamics of a viscous 
liquid

( ) ( ) ,;T
t

t,
ζ=
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ζ∂

α
α x

x
                           (3.9)

as well as that at fluctuation kinetic stage of evolution 
the  dynamics  of  long-wave  fluctuations  has  been 
determined  by  the  unique  quantity  L(x;f)  which  is  a 
functional of Bogolyubov's theory (see (2.6), (2.7)).

In conclusion let us note the following. In case of 
usual (without fluctuations)  hydrodynamics an entropy 
density  s(x)  is  determined  by  the  hydrodynamic 
parameters  ζα(x,t)  (s(x)≡s(ζ(x,t)))  and  satisfy  the 
equation
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where sk(x;ζ) is an entropy current density and I(x;ζ) is 
an entropy production, and what is more I(x;ζ)≥0 since 
the H-theorem is true in usual hydrodynamics (see for 
instance  [7]).  It  is  shown  [8],  that  at  the  fluctuation 
hydrodynamic stage of  evolution equation for  entropy 
has the form
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where
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and what  is  more  by force  of  positivity  of  I(x;ζ)  the 
entropy  production  I(x;ξ)  is  positive  too,  I(x;ξ)≥0,  at 
given  fluctuations.  Similarly  the  H-theorem  is  to  be 
proved for fluctuation kinetics.
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