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The velocity of slow nuclear burning was obtained in the two-group approximation. Two groups of neutrons 
were considered: the group of thermal (slow) neutrons and the group of fast neutrons; each group being described 
with its diffusion equation. It was shown that in the case of heavy moderators the obtained expression for the two-
group velocity had the same structure as the one-group velocity studied by authors before if new effective diffusion 
and  multiplication  coefficients  were  introduced.  The  expressions  for  corresponding  effective  coefficients  are 
presented. 
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The simplest variant of many-group approximation 
is so named two-group approximation, which considers 
only two mutually  connected neutron groups;  namely 
the groups of thermal and fast neutrons. The neutrons 
with thermal energy belong to the thermal group and all 
the neutrons with the energy exceeding the thermal one 
belong to the fast neutron group. It worth noting, that 
such  division  is  justified  also from  the  physical 
consideration because cross-sections of  reactions with 
thermal  neutrons  differ  substantially  from  the  cross-
sections of fast neutrons. When we consider diffusion 
processes  each  of  these  groups  is  taken  to  be  a 
“monoenergetic”  one  described  by  its  own  diffusion 
equation  with  constant  coefficients  not  depending  on 
energy. In other words it is supposed that the neutrons 
diffuse  without  energy  loss  within  each  group  until 
some  of  the  fast  neutrons  undergo  a  number  of 
collisions necessary to decrease their  energy down to 
the level  of the lower thermal group; at  that  moment 
these neutrons immediately jump to the thermal group 
[1-3].

According to this picture, the diffusion equation that 
describes the neutron of the fast group takes the form
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where ),(2 tn r  is the neutron density of the fast group; 
2D  is  the  neutron  diffusion  coefficient  for  the  fast 

group;  2τ  is the fast neutron life-time during which it 
undergoes slowing down to the thermal energy range; 
ν  is  the  average  number  of  fast  neutrons  born  at 
thermal  fission; ),(1 tn r  is  the  density  of  thermal 
neutrons; and τ1 is the thermal fission capture life-time.

The  slow  neutron  density  ),(1 tn r  satisfies  the 
following diffusion equation 
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where 1D  is the thermal diffusion coefficient.
The diffusion coefficient can be estimated, if we use 

the  relation  22
2
2 τ= DL ,  where  2

L  is  the  diffusion 

length for the fast neutron group. In the case of graphite 
moderator 1.02

1
2
2 ≈−LL  [2],  where  1L  is  the  thermal 

diffusion  length  and  the  ratio  of  fast  and  thermal 
neutron  lifetimes  1

12
−ττ  has  the  order  of  magnitude 

21
12 10 −− ≈ττ  (see,  e.g.,  [2,3]).  We  obtain  for  the 

graphite moderator that 101
12 ≈−DD .

We shall solve the system of equations (1), (2) for 
the case of δ–shaped thermal source having the output 

02 nπ  and placed at the initial moment in the  0=z  
plane. Therefore the initial conditions for our problem 
are
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As for the physical picture, we can speak here about 
the  propagation  of  an  initial  fluctuation  of  thermal 
neutron density.

The boundary conditions on the cylinder surface are 
assumed  to  be  zero  so  we  seek  the  solution  of  our 
system  in  the  form  ( ) =tzyxn j ,,,  

),(,sinsin),( 21=ππ= jy
a

x
a

tzn j . As is easy to see the 

existence of  boundaries along  x  and y axes results  in 
renormalization of quantities ),( 211 =τ − jj ,
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Finally the system of equations which describes the 
neutron diffusion along the reactor axis has the form
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The set of equations (5) can be solved by the Fourier 
transform. Taking the Fourier transform with respect to z,
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we obtain the system of ordinary differential equations 
for ),( tkN j :
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We seek the solution of  equations (7) in the form 
( )2,1== λ jeCN t

jj ,  and  after  equating  the 
determinant  to  zero  we  obtain  the  characteristic 
equation of the system 
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We are interested in multiplicative solutions, namely 
the  solutions  for  which  the  neutron  density  increase 
exponentially with time at any point. As it was shown 
earlier [4,5] only such solutions describe a slow nuclear 
burning wave.  Thus we can restrict  ourselves  only to 
one (positive) root of characteristic equation.
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though the coefficient  )(1 kC + is calculated accounting 
for both roots.

The  problem  of  determination  of  slow  nuclear 
burning  velocity  0v  reduces  itself  to  finding  such 
velocity value  0vv =  that  the asymptotic behavior of 
the thermal neutron density ),( tzn1  for the case vtz =  
and  ∞→t  undergoes a change when passing through 
this velocity value. This asymptotics can be obtained by 
the  saddle-point  method from the  integral  expression 
for ),(1 tvtn
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where )(k+λ  is given by Eq.(9).

Asymptotic  velocity  0v  in  this  case  will  be 
determined from the solution of two algebraic equations
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The first of these equations determines the saddle-point 
)(0 vk , whereas the second represents the condition for 

the  change  in  the  asymptotics  character  of  ( )tvtn ,1  
(from  the  exponential  increase  at  0vv <  to  damped 
exponential at 0vv >  ). 

Using the expression (9)  for  the  )(k+λ  we can 
write the equations (11) in explicit form
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The solution of system (12) can be easily obtained in the 
approximation of  small multiplication  1< <γ .  As can 
be shown in this case  4
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21 )( kDkDD ≈−  has the 

order of magnitude  2γ  and we can expand the square 
root  in  (9)  up  to  terms  of  the  order  of  γ.  Indeed, 
according to  (11)  characteristic  0k  have the order  of 

1
0

−≈ vDk  and the velocity of slow nuclear burning is 

the quantity of the order of RDv ≈0  [4,5], where R  
is the characteristic coefficient of multiplication and D  
is the characteristic diffusion coefficient. In the case of 
small γ under consideration here,  1−γ τ≈R . Therefore, 
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.  Expanding the square root in 
Eq.(9) we obtain
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Using Eq.(13) we shall put the system (11) into the 
form
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Solving  these  equations  with  respect  to  v  one 
obtains

12
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where Deff is the effective diffusion coefficient









τ+τ ′

τ ′−τ ′−
−+=

12

1221
212

1 ))((
)(eff

DD
DDD (16)



and Aeff is the effective coefficient of multiplication
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The role of the effective lifetime plays the quantity 
)( 21 τ ′+τ ′  Therefore the concept of slow nuclear burning 

velocity  allows  generalization  for  the  case  of  two 
neutron groups. In the case of heavy moderator, as we 
saw  before,  there  exists  the  relation  11

12 < <τ ′τ ′ −)(  
between  lifetimes  1τ ′  and  2τ ′ .  In  this  case  it  follows 
from Eq.(16) 

1eff DD ≅ . (18)

Therefore, up to the terms of the order of γ Eq.(15) 
obtained in the two-group approximation turns into the 
expression for the velocity which was obtained earlier 
[4,5] in the one-group approximation
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We consider now the solution of the system (12) in 
the  general  case  of  heavy  moderators  for  which  we 
assume  the  validity  of  the  following  conditions 

21 DD /=ζ ,  112 < <ζ< <ττ / ,  11122 < <ττ DD / , 
(note that for graphite  1021 ./ ∝DD ,  01012 ./ ∝ττ ). 
As for quantity 12 τν τ /  we have ζ≤τν τ 12 /  (for U235 

52.=ν ).
Using these relations we consider now the radicand 

in  (9)  which  after  taking  the  quantity  1
2 )( −τ ′  out  of 

radical we can write in the form
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As it is easy to see two summands under the radical are 
comparable  by  magnitude  only  in  the  case  when the 
dimensionless  parameter  2

22 kD τ ′  is  close  to  –1. 

Indeed, assuming ykD +−=τ ′ 12
22  we obtain that the 

condition ( ) 21
12

// τν τ∝ζ+y  must be fulfilled .For all 

other values of  2k  the first term exceeds considerably 
the  second  one and  the  quantity  )(k+λ  has 
correspondingly the form
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here γ  is given by Eq.(17).
Substituting the obtained expression for the  )(k+λ  

into the system (11) we find for the velocity of slow 
nuclear burning the expression
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(for  graphite  %25≈∆ ).The quantity  ∗A~  is  given by 
formula (20).

Therefore, according to Eq. (23) in this case we can 
also speak about the slow nuclear burning velocity the 
expression  for  which  has  a  characteristic  structure 
similar  to  the  structure  of  the  slow  nuclear  burning 
velocity in the one-group approximation [4,5].

According to the above discussion we proved that 
both  in  the  one-group  and  the  two-group 
approximations  we  could  say  about  the  slow nuclear 
burning  velocity.  This  velocity  is  proportional  to  the 
square  root  from  the  product  of  diffusion  and 
multiplication coefficients.

Finally, the account of the neutrons with the energy 
above the thermal one as a separate neutron group in the 
framework of two-group approximation doesn’t change 
the result  qualitatively though it  leads to not  so large 
quantitative  renormalization  of  the  thermal  diffusion 
coefficient in the case of heavy moderators.
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