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Master  equation  for  density  matrix  of  an  open  many–particle  system is  derived  in  the  occupation  number 
representation. The Born approximation with respect to system–bath interaction is utilized and the fast relaxation 
within the system is assumed to be fulfiled. The reduction of a linear master equation to a nonlinear set of kinetic 
equations for one–particle distribution functions is carried out at the condition of strong particle–particle interaction. 
As an example, the procedure of derivation of kinetic equations for description of electron transfer through specific 
molecular nanostructures like molecular wires is demonstrated with taking into consideration the strong Coulomb 
repulsion between the transferred electrons.
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1. INTRODUCTION
Correct  and  the  most  complete  description  of 

evolution  of  an  open  quantum  system  (QS)  to  its 
equilibrium state occurs with the nonequilibrium density 
matrix  method  [1,2].  The  method  brings  to  a 
Generalized Master Equation (GME) for density matrix 
of the QS, σ ( )t . In Born approximation with respect to 
interaction H int  between the QS and the bath, the GME 
reads (cf. e.g. Refs. [3–5]

[ ] ( ) ( ) , ( )σ σ τ τt i H t d e i H H
t

B= − − − +∫ 
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Here
( )[ ]A = ≡ − +Tr A A i H HB Bρ ττ, exp 0 

( )[ ] ,exp 0 τ+× BHHiA (2)

where   H0  is  the  QS  Hamiltonian,  and  =ρ B  
( ) ( )[ ]TkHTrTkH BBBBB −−= expexp  is the equilibri-

um density matrix of  heat bath. In GME (1), one takes 
 H =int 0 .  If  it  is  not  the case,  then the substitutions 
H H H0 → +0 int  and  H H Hint int int→ −  have  to  be 
performed.

Integro–differential operator  equation (1) represents 
a  non–Markovian  form  of  GME.  Let   evτ  be  the 
characteristic time of evolution process which exceeds 
strongly  the  characteristic  time  τ d  that  specifies  the 
kernel’s  decrease  in  the  integral-containing  part  of 
Eq. (1).  Therefore,  in  line  with general  principles  of  the 
reduction of non-Markovian equation to the Markovian one 
[1,4] one can extend the upper integration limit in Eq. (1) up 
to  ∞ ,  putting  simultaneously  σ τ σ( - ) ( )t t≅ . Such  a 
substitution reduces an integro–differential GME (1) to a pure 
differential GME. Below we shall utilize a tetradic form of 
differential GME (the Redfield’s equation [3–5]),
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which is valid for elements  σ σnm t n t m( ) ( )=  of the 

QS density matrix. Here, the manifold { }n  relates to a 
complete set of QS basic functions so that
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In Eq. (4),  E n( ) is the QS energy in state  n  whereas 
V V n H nnn n n′ ′= = ′*

0  is the transition matrix element 

between  different  states.  Operator  == ′′
*ˆˆ
nnnn FF  

nHn ′= int  characterizes the coupling between the QS 

and the heat bath. Quantities Vnn ′ ,  and Fnn ′  specify the 
dynamic and relaxation transitions in the QS.

Eq. (3)  is  a  basic  one  for  derivation  of  kinetic 
equations  describing an  evolution  process  in  different 
type of open QS. Two first  terms in the right part  of 
Eq. (3) describe a pure dynamic behavior of the QS (

[ ]ω nm E n E m≡ −( ) ( )  is  the  transition  frequency) 
while the third term is responsible for a nonequilibrium 
process  which  is  characterized  by  a  relaxation 
supermatrix
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(Strongly, the form (6)  is valid at small value of  nnV ′  
and if )()( nEnE ′≈  [5,6]).

2. NONLINEAR FORM OF KINETIC 
EQUATION

The  further  specification  of  kinetic  equations  is 
dictated by the relation between the pure dynamic and 
relaxation processes in the QS. We restrict ourselves by 
consideration  of  transfer  processes  in  a  condensed 
matter where the bath vibrational levels imitate a quasi 
continuous  spectrum.  In  this  case,  the  transition 
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probabilities coincide with those found in the framework 
of Fermi Golden Rule (i.e. at small couplings nnV ′  and if 

)()( nEnE ′≈  [6]).  As  a  result,  the  basic  set  of 
equations (3)  is  transformed  to  a  separate  set  of 
equations  for  diagonal  elements  σ nn t( )  only.  The  set 
reads as

( ) ( ) ( ) ( )σ σ σnn nn
n

nn n nt R t t= − −′
′

′ ′∑ (7)

where quantity
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2 2π

δ


( ) ( ) (8)

specifies the transition probability between the QS states 
n  and ′n . It is very important that each QS state has 

a complex structure with a manifold of substates,  { }α . 
Just  a  relaxation  within  such  a  manifold  (caused  by 
interaction  with  a  heat  bath)  is  responsible  for 
appearance of the irreversibility of a common evolution 
process  in  open  QS.  Let,  for  instance,  manifold  { }α  
relate to vibrational substates of electronic term j so that 

α= jn  and thus α= jEnE )(  is the energy of the α -

th substate of site  j  while  α ′′α′ = jjnn VV  is the coupling 
between the vibrational substates of terms  j  and  ′j . 
Fast relaxation between the vibrational substates of each 
term  brings  (for  a  short  characteristic  time relτ )  to  a 
Boltzmann distribution within the vibrational manifold. 
As  far  as  the  population  of  each  state  is  defined  by 

diagonal element )()( tt jjnn αασ=σ  the ratio

( )[ ]σ σα α α α α αj j j j j j Bt t E E k T( ) ( ) exp′ ′ ′= − − (9)

is satisfied at any time relt τ> > . [In Eq. (9), kB  and T  
are  the  Boltzmann  constant  and  the  temperature, 
respectively.] Therefore, if inter–term transitions occur 
with the characteristic time τ τtr rel> > , one can utilize a 
property (9)  without  any limitations.  In  particular,  the 
property (9) allows us to transform Eq. (7) to Pauli–like 
equation

[ ]P t P t P tj j j j j j j
j
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′
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for  integral  term  populations P t tj j j( ) ( )= ∑ σ α αα . 
Quantities
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with
( ) ( ) ( )∑

α ′
α ′αα −−= TkETkEEW BjBjj expexp (12)

being the distribution function for the j -th term, are the 
inter–term transfer rates.

Rate  equations (11)  describe  a  linear  one–particle 
transfer.  However,  if  particle–particle  correlations  are 
important these linear equations do not reflect an actual 
situation.  One  of  important  examples  is  a  distant 

electron transfer (ET) in molecular nanostructures like 
molecular  wires  [5,7-9].  Just  in  such  mesoscopic 
systems,  a  Coulombic  interaction  between  the 
transferred  electrons  is  shown  to  form  the  specific 
nonlinear intramolecular currents [10,11].

The  main  goal  of  the  present  work  is  to  derive 
kinetic equations for description of ET in the condition 
of  strong  electron–electron  correlation.  We  restrict 
ourselves  by  the  systems  where  ET  occurs  on  the 
background of fast relaxation within the set of sublevels 
belonging  each  site  of  electron  localization.  It  means 
that one can start from a general set of linear equations 
(7)  where  now  the  n  specifies  many–particle 
electronic states of the whole QS. Below we shall utilize 
the occupation number representation where

{ }n N N= = ∏ λ
λ

(13)

and  thus  manifold  { }N  fixes  electron  occupation 
numbers  N λ = 0 1,  for  each  single–electron  state  λ . 
The  structure  of  many–particle  state  allows  us  to 
introduce the following form for diagonal elements of 
density matrix,

{ } { }σ σ
λ

λ
nn N N Nt t P t( ) ( ) ( ).= = ∏ (14)

Here,  quantity  P t tN N Nλ λ λ
σ( ) ( )=  satisfies  the 

normalization condition,
P tN

N
λ

λ

( ) ,=∑ 1 (15)

and  determines  the  occupancy of  the  λ -th  QS state, 
P tλ ( ) , via relations

( )P t N P t N P tN
N N

Nλ λ λλ
λ λ

λ
( ) ( ) ( )= = −∑ ∑ −1 1 (16)

and
( ) .)()(1)(1 1∑∑

λ
λ

λ
λ −λλλ =−=−

N
N

N
N tPNtPNtP (17)

The  structure  of  many–particle  density  matrix, 
Eq. (14) supposes the derivation of self–consistent set of 
equations  for  one–particle  functions  )(tPN λ  or  that  is 

the  same,  distribution  functions  == λλ )()( 1 tPtP  
)(1 0 tP λ−= . To derive the corresponding set of equati-

ons we substitute form (14) in Eq. (7) which now reads 
as

{ } { }
{ }

d
dt

P t V P tN N N
N

Nλ λ

π
λ λ

( ) ( )= − 


∏ ∑ ∏′
′

2 2



{ }( ) { }( )( )− 


′ −′∏ P t E N E NN λ
λ

δ( ) (18)

Here,
{ }( ) { }( )E N E N U N= +∑ λ λ

λ
(19)

is  the  QS  energy  with  taking  into  consideration  an 
interaction  between  the  particles  (term  { }( )U N ). 
Quantity  { } { } { } { }V N V NN N tr′ = ′   is  the  matrix 

element  between  many–particle  QS  states  with  Vtr  
being the transfer operator.  Linear form (18) generates 
automatically  nonlinear  kinetic  equations  for  one–
particle distribution functions. Actually, let one multiply 
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Eq. (18)  by the N ξ  and then  sum over  all  occupation 
numbers  N λ .  With  utilization  of  Eqs. (15)–(17)  one 
derives ( )

)()()( tPtPtPN
N N

NN ξ
ξ≠λ ξ≠λ

ξ =∑ ∑ ∏
λ ξ

λξ  and thus

∑ ∑ ∏
′ λ

ξ′ξ 
π−=

λ
}{ }{

2
}}{{ )(2)(

N N
NNN tPNVtP




{ }( ) { }( )( )NENEtPN −′δ
− ∏

λ
′λ

)( (20)

This  nonlinear  equation  written  for  one–particle 
occupancies  P tξ ( )  is  the  main  result  of  the  present 
work. Note that  form (24) works in conditions of fast 
relaxation in QS. The further specification of Eq. (24) is 
dictated by concrete transfer process.

3. KINETIC EQUATION FOR SHORT 
MOLECULAR WIRE

As an example we consider the ET through a short 
molecular  wire  where  interaction  between  the 
transferred electrons is so large that no more than one 
transferred  electron  be  captured  by  the  wire  in  the 
course of ET across the wire [11]. Let mµE  and 0

mµE  be 
the  energies  of  the  -th  vibrational  state  when  the 
transferred electron does or does not occupy the  m -th 
wire  unit  while  ksE  is  the  electron  energy  when an 
electron  (with  the  wave  vector  k )  occupies  the 
conduction  band  of  the  left  (=L)  or  the  right  (=R) 
microelectrodes.  Linear  wire  of   units  is  assumed  to 
contact  with  the  corresponding  electrodes  via  their 
terminal  units  1=m  and  Mm = .  No  any  magnetic 
interactions are supposed to be in the system “electrode 
L–Wire–electrode R” (LWR–system). With omitting the 
spin identification we operate with two type of single–
electron  states,  ks=λ  and  mµ=λ .  Thus,  just  the 
occupation numbers  1,0=ksN  and  1,0== ∑ µ mµm NN  
along  with  the  electronic  occupancies  )(tPsk  and 

∑ µ µ= )()( tPtP mm  exhibit  as  the  main  quantum  and 
statistical  characteristics  of  an  electron  in  the  LWR–
system. Electron energy (19) of this system has a form

( )[ ]∑∑ −++= µ ′µ
m

mmmm NENENENE 1})({ 0
LL

k
kk

.})({RR NUNE ++ ∑
q

qq (21)

This value depends strongly on the number of electrons 
captured by the wire units (via the numbers 1,0=mN ), 
and  a  Coulomb  repulsion  between  the  transferring 
electrons (via term })({NU ).

Single–electron  transitions  are  caused  by  the 
transition operator

∑
λ ′λ

λ ′
+
λλ ′λ=

,
aaTVtr (22)

where  +
λa  and  λa  are  electron  creation  and  electron 

annihilation operators with respect to a single electron 
state λ  while λ ′λT  is the corresponding transition matrix 
element.  Let  one  derive  kinetic  equation  for  the 
occupancy  )(L tP k .  In  this  case,  only  single–electron 

states 11,L, µ=λ ′λ k  participate in the ET process. E.g. 
the ET occurs between the -th vibrational level of site 

1=m  and  the  k -th  band  state.  The  corresponding 
coupling reads 11 µµVT L ′=λ ′λ k . [We employ a Condon 

approximation,  when  matrix  elements  mn mnV µν  are 
factorized  to  the  form  where   is  the  pure  electronic 
coupling  while   is  the  overlap  integral  between  the 
vibrational functions]. Therefore,

( ) ( )[ ] 111L
*

L1LL}}{{ 11 µµ ′′−′+−=′ NNVNNVV NN kkkk

kk LL11 1,1, NNNN −′−′ δδ×

∏∏∏ ′
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′
≠′

′ δδδ×
′′

qkk
qqkk RRLL ,

1
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j
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and thus

∑ ∑ ∑ ∑ ∑
µ µ ′µ

µ ′µπ−=
k q

kk
L R 1 11

2
11

2
LL

2)(
N N N Nmm

VtP




( ) ( )})({})({1 1L NENENN ′−δ−× k
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11L11L 11 tPtPtPtP NNNN µ−−µ −×
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.)()(
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1
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Now  we  take  into  consideration  the  fact  of  fast 
relaxation within electronic terms. It  has been already 
noted that such a relaxation brings to important ratio (9) 
between the partial site occupancies. Similar ratio exists 
for the occupancies )(tP

mN µ . It reads =µ ′µ )()( tPtP
mm NN  

( )[ ( ) ( ) ]TkNEETkNEE jmmmmm B
00

B 1exp
00

−−−−−= µ ′µµ ′µ  

and  thus  expresses  the  vibration  occupancies  )(tP
mN µ  

via the integral occupancies )(tP
mN  as

( ) ( )[ ]0,
0

1,)()(
mmmm NmNmNN EWEWtPtP δ+δ= µµµ (25)

where Gibbs distribution functions for electronic terms 
are defined by Eq. (12). Now, bearing in mind a weak 
dependence of Coulombic repulsion on vibrational states µ  
we can sum a right part of Eq. (24) over all vibrational states 

mµ  (except  1µ  and  1µ′ ).  With  normalization  conditions 
1)( =∑ mµ mµEW  and 1)( 0 =∑ mµ mµEW  it yields

∑ ∑ ∑ ∑ ∑
µ ′µ

µ ′µπ−=
k q

kk
L R 1 11

2
11

2
LL

2)(
N N N Nm

VtP




( ) ( ) ( )[ ]0,
0
11,11L 1111

1 NN EWEWNN δ+δ−× µ ′µk

( ))()()()(
1L1L 11 tPtPtPtP NNNN −−−×

kk

( ) .})({})({)()(
R

1
NENEtPtP N

m
Nm

′−δ× ∏∏
≠ q

q (26)

Note  now that  for  a  short  molecular  wire  under 
consideration, the repulsion of transferring electrons is 
assumed to  be  too  strong to  allow the  appearance  of 
more  then  one  transferring  electron  within  the  wire. 
Physically, this fact  indicates that  energy conservation 
law,  })({})({ NENE ′= ,  containing  in  δ –function  of 
Eq. (26),  is  assumed  to  be  fulfilled  if  only  a  single 
hopping electron is captured by the wire in the course of 
ET,  i.e.  at  conditions  11 ≤∑ =

N
m mN  and  11 ≤′∑ =

N
m mN . 

Just these conditions one has to take into consideration 
when the summation over occupation numbers is carried 
out.  To  specify  this  circumstance,  we  introduce  the 
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"repulsion  multiplier"  ( )∏ = −≡ N
m mNQ 10 1  which  is 

equal 1 for empty wire (i.e. at  01 =∑ =
N
m mN ) and 0 if 

even one transferring electron occupies the wire (i.e. at 
01 >∑ =

N
m mN ). The introduction of  enables one to omit 

the Coulombic contributions  })({NU  and  })({NU ′  in 
the energies involved in  δ –function of Eq. (26).  With 
substitution  the  ( )})({})({ NENE ′−δ  for  the 

( )µµ ′ −+δ 1
0
10 EEEQ ak  and utilization of Eqs. (15-17) we 

reduce Eq. (26) to the following compact form

( )∑
µ ′µ

µµ ′ −+δµ ′µπ−= 1
0
1

22
LL

2)( EEEVtP akkk 
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0
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≠

−×
N

m
m tP

1
)(1 (27)

This equation defines automatically the variation in time 
of  the  number  of  electrons  which  are  capable  to  be 
transferred through a molecular wire from electrode L to 
electrode  R,  i.e.  the  quantity  )(L tN = =∑ k k )(L tP  

=

)(R tN− . As far as  )(tNL  is the bulk characteristic, it 
varies  slightly  in  the  course  of  the  ET  through  a 
molecular wire.  It  means that  the  )(L tP k  has a minor 
distinction from equilibrium Fermi distribution function

( )[ ]{ } 1
BFLL 1exp)( −

− += TkEEEn kk (28)
where FE  is the Fermi energy of electrode. This let one 
put ( )kk LL )( EntP ≅  in right part of Eq. (27) and thus

( )∏
=

−χ−=
N

m
m tPtN

1
LL )(1)(

( ) ( ) .)(11)(
2

11L ∏
=

− −δ−χ+
N

m
mm tPtP (29)

Rate  constants  Lχ  and  L-χ  follow from Eq. (27)  at 
( )kk LL )( EntP ≅  and read as

( )∑
µ ′µ

µ ′µπ=χ
k

L
22

LL
2

kk EnV


( ) ( )[ ] ,L
0
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0
1 kEEEEW −−δ× µ ′µµ ′ (30)
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− −µ ′µπ=χ
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22

LL 12
kk EnV


( ) ( )[ ] .L

0
111 kEEEEW −−δ× µ ′µµ (31)

Analogously, one can derive a complete set of equations 
for all site occupancies )(tPm . For instance,

( ) ( )∏
=

− −+χ−=
N

m
mL tPtPgtP

2
111 )(1)()(

( ) ( ) .)(1)()(1
2

22
1

∏∏
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N

m
m

N

m
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It  is  clearly  seen  from  Eqs. (27)  and  (32)  that  just 
nonlinear  factors  ( )∏ −m m tP )(1  caused  by  extremely 
strong Coulomb repulsion between the transferred electrons 
are  responsible  for  possible  blocking the  ET  process. 
Similar  situation  appears  e.g.  at  resonant  electron 
tunneling in semiconductor heterostructures [12].

In conclusion, we note that the approach proposed in 

the  present  paper  gives  possibility  to  derive  different 
form  of  nonlinear  kinetic  equations  for  one–particle 
distribution functions if only the characteristic time of 
transfer process exceeds strongly the characteristic times of 
relaxation processes within electronic terms of the QS.
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