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Master equation for density matrix of an open many—particle system is derived in the occupation number
representation. The Born approximation with respect to system—bath interaction is utilized and the fast relaxation
within the system is assumed to be fulfiled. The reduction of a linear master equation to a nonlinear set of kinetic
equations for one—particle distribution functions is carried out at the condition of strong particle—particle interaction.
As an example, the procedure of derivation of kinetic equations for description of electron transfer through specific
molecular nanostructures like molecular wires is demonstrated with taking into consideration the strong Coulomb

repulsion between the transferred electrons.
PACS: 02.50.Ey, 02.50.Wp, 05.20.Dd, 05.60.+w

1. INTRODUCTION

Correct and the most complete description of
evolution of an open quantum system (QS) to its
equilibrium state occurs with the nonequilibrium density
matrix method [1,2]. The method brings to a
Generalized Master Equation (GME) for density matrix
of the QS, 0(¢) . In Born approximation with respect to
interaction H;,, between the QS and the bath, the GME
reads (cf. e.g. Refs. [3-5]
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where H; is the QS Hamiltonian, and p*
= expl- H, /k,T)/Trylexp(- H, /k,T)] is the equilibri-
um density matrix of heat bath. In GME (1), one takes
<H im>:0. If it is not the case, then the substitutions
Hy - Hy+(H,) and H, - H,-(H,) have to be
performed.
Integro—differential operator equation (1) represents

a non—-Markovian form of GME. Let T, be the
characteristic time of evolution process which exceeds
strongly the characteristic time T, that specifies the
kernel’s decrease in the integral-containing part of
Eq. (1). Therefore, in line with general principles of the
reduction of non-Markovian equation to the Markovian one
[1,4] one can extend the upper integration limit in Eq. (1) up
to ® , putting simultanecously 0(f#-T1)00(¢). Such a
substitution reduces an integro—differential GME (1) to a pure
differential GME. Below we shall utilize a tetradic form of
differential GME (the Redfield’s equation [3-5]),
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which is valid for elements 0, () = <l’l|0 (t )|m> of the

QS density matrix. Here, the manifold [|n>] relates to a

complete set of QS basic functions so that
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In Eq. (4), E(n)is the QS energy in state |7) whereas
V. =V, = <n|H0|n’> is the transition matrix element
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n'> characterizes the coupling between the QS

and the heat bath. Quantities V,,, and F

. specify the
dynamic and relaxation transitions in the QS.

Eq. (3) is a basic one for derivation of kinetic
equations describing an evolution process in different
type of open QS. Two first terms in the right part of

Eq. (3) describe a pure dynamic behavior of the QS (
W, = [E(”)' E(m)] / Ois the transition frequency)
while the third term is responsible for a nonequilibrium

process which is characterized by a relaxation
supermatrix
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(Strongly, the form (6) is valid at small value of V,,
and if E(n)= E(n') [5,6]).

2. NONLINEAR FORM OF KINETIC
EQUATION

The further specification of kinetic equations is
dictated by the relation between the pure dynamic and
relaxation processes in the QS. We restrict ourselves by
consideration of transfer processes in a condensed
matter where the bath vibrational levels imitate a quasi
continuous spectrum. In this case, the transition
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probabilities coincide with those found in the framework
V.. andif

basic set of

of Fermi Golden Rule (i.e. at small couplings
E(n)= E(n') [6]). As a result, the
equations (3) is transformed to a separate set of
equations for diagonal elements 0 ,,(¢) only. The set

reads as
d rm(t) = - Z Rmz’ (G nn (t) Y n'n' (t)) (7)
where quantity
2
R, = R, [T L8 Em) - B (8)

specifies the transition probability between the QS states
|ﬂ> and |n'> . It is very important that each QS state has

a complex structure with a manifold of substates, [G } .

Just a relaxation within such a manifold (caused by
interaction with a heat bath) is responsible for
appearance of the irreversibility of a common evolution

process in open QS. Let, for instance, manifold {0( }

relate to vibrational substates of electronic term j so that
|n)=|ja) and thus £(n)= E, is the energy of the U -
th substate of site / while V,, = Vo is the coupling
between the vibrational substates of terms J and j'.
Fast relaxation between the vibrational substates of each
term brings (for a short characteristic timeTl,,) to a
Boltzmann distribution within the vibrational manifold.
As far as the population of each state is defined by
diagonal element O (D=0 o (1) the ratio

CFjuju (l‘)/(I ja‘ju‘(t): €Xp| - (Ejﬂ - EJ'U')

.[In Eq. (9), kz and T
are the Boltzmann constant and the temperature,
respectively.] Therefore, if inter—term transitions occur
with the characteristic time T, >> T, , one can utilize a

©)

is satisfied at any time #>> T,

property (9) without any limitations. In particular, the
property (9) allows us to transform Eq. (7) to Pauli-like
equation
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being the distribution function for the J -th term, are the
inter—term transfer rates.

Rate equations (11) describe a linear one—particle
transfer. However, if particle—particle correlations are
important these linear equations do not reflect an actual
situation. One of important examples is a distant
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electron transfer (ET) in molecular nanostructures like
molecular wires [5,7-9]. Just in such mesoscopic
systems, a Coulombic interaction between the
transferred electrons is shown to form the specific
nonlinear intramolecular currents [10,11].

The main goal of the present work is to derive
kinetic equations for description of ET in the condition
of strong electron—electron correlation. We restrict
ourselves by the systems where ET occurs on the
background of fast relaxation within the set of sublevels
belonging each site of electron localization. It means
that one can start from a general set of linear equations

(7) where now the |n>

electronic states of the whole QS. Below we shall utilize
the occupation number representation where

= [)= 11 1%0)
and thus manifold {N}

numbers N, = 0,1 for each single—electron state A .

specifies many—particle

(13)

fixes electron occupation

The structure of many—particle state allows us to
introduce the following form for diagonal elements of
density matrix,
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Here, quantity satisfies  the

(15)
and determines the occupancy of the \ -th QS state,
B (1), via relations
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The structure of many—particle density matrix,
Eq. (14) supposes the derivation of self—consistent set of
Py, () or that is
BR(®)= K=

= 1- By (1) . To derive the corresponding set of equati-

equations for one—particle functions

the same, distribution functions

ons we substitute form (14) in Eq. (7) which now reads
as

d 2n
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Here,

E({N}) = I EN, ¢ ul{ M) (19)

is the QS energy with taking into consideration an
interaction between the particles (term U({N}) ).

Quantity ¥}y < ‘ > the

element between manyfpartlcle QS states with V,,

being the transfer operator. Linear form (18) generates
automatically nonlinear kinetic equations for one—
particle distribution functions. Actually, let one multiply

matrix



Eq. (18) by the Ny and then sum over all occupation
numbers N, . With utilization of Egs. (15)—(17) one
ZM);/ N PN{ (t)ﬂz Py 0= B () and thus

derives "
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This nonhnear equation written for one—particle

occupancies £ (#) is the main result of the present

work. Note that form (24) works in conditions of fast
relaxation in QS. The further specification of Eq. (24) is
dictated by concrete transfer process.

3. KINETIC EQUATION FOR SHORT

MOLECULAR WIRE
As an example we consider the ET through a short
molecular wire where interaction between the

transferred electrons is so large that no more than one
transferred electron be captured by the wire in the

course of ET across the wire [11]. Let £,, and E,?w be
the energies of the -th vibrational state when the
transferred electron does or does not occupy the 7 -th
wire unit while E, is the electron energy when an

electron (with the wave vector k) occupies the
conduction band of the left (=L) or the right (=R)
microelectrodes. Linear wire of units is assumed to
contact with the corresponding electrodes via their
terminal units m=1 and m= M . No any magnetic
interactions are supposed to be in the system “electrode
L—Wire—electrode R” (LWR—system). With omitting the
spin identification we operate with two type of single—
electron states, A = sk and A = mu . Thus, just the

occupation numbers Ny = 0,1 and N, =) N, = 0,1
along with the electronic occupancies P, (f) and
B, ()= Y B, () exhibit as the main quantum and
statistical characteristics of an electron in the LWR—

system. Electron energy (19) of this system has a form
E(ND= Vit § (BNt £ (1 0,

m
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This value depends strongly on the number of electrons
captured by the wire units (via the numbers N, = 0,1),
and a Coulomb repulsion between the transferring
electrons (via term U({N})).

Single—electron transitions are caused by the
transition operator

) Tya (22)
Iy

where a, and @, are electron creation and electron
annihilation operators with respect to a single electron
state A while 7},  is the corresponding transition matrix
element. Let one derive kinetic equation for the

occupancy F, (f). In this case, only single—electron

states A,A' = LK,1i | participate in the ET process. E.g.
the ET occurs between the -th vibrational level of site
m=1 and the k-th band state. The corresponding

coupling reads T}, = Vi, <,u'1 ‘,u1> . [We employ a Condon

approximation, when matrix elements V. ., are

factorized to the form where 1is the pure electronic

coupling while is the overlap integral between the
vibrational functions]. Therefore,
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Now we take into consideration the fact of fast
relaxation within electronic terms. It has been already
noted that such a relaxation brings to important ratio (9)
between the partial site occupancies. Similar ratio exists

for the occupancies Py, (1) . It reads Py, (0)/Py (1) =
- E,, )( - j)/kBT]

= exp[-( mu )N /k T- ( Wluo miy
and thus expresses the vibration occupancies Py, (?)

via the integral occupancies Ly, (f) as

By, @)= By, (I)IW(Emu )5 Nt T W(E'?«u )5 v, 0] (25)

where Gibbs distribution functions for electronic terms
are defined by Eq. (12). Now, bearing in mind a weak
dependence of Coulombic repulsion on vibrational states 4
we can sum a right part of Eq. (24) over all vibrational states
4, (except 4; and 4 ). With normalization conditions

Y W(EL= and § |, W(E,,)=1 ityields
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Note now that for a short molecular wire under
consideration, the repulsion of transferring electrons is
assumed to be too strong to allow the appearance of
more then one transferring electron within the wire.
Physically, this fact indicates that energy conservation
law, E({N})= E({N'}), containing in 8 —function of
Eq. (26), is assumed to be fulfilled if only a single
hopping electron is captured by the wire in the course of

ET, ie. at conditions } ::]Nm <1 and ) Z:]Nln <1.
Just these conditions one has to take into consideration

when the summation over occupation numbers is carried
out. To specify this circumstance, we introduce the



QO E I-I ’Z:l(] - Nm) which is
Nm = 0) and O if

even one transferring electron occupies the wire (i.e. at

"repulsion multiplier"
N

m=1

equal 1 for empty wire (i.e. at )

) Zlem > 0). The introduction of enables one to omit

the Coulombic contributions U({N}) and U({N'}) in
the energies involved in d —function of Eq. (26). With
substitution  the  8(E({N})- E(IN'D))  for the
0,8(E, + E. - E, | and utilization of Egs. (15-17) we
reduce Eq. (26) to the following compact form

ENCEREL NS R DRI
pu
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m# 1
This equation defines automatically the variation in time
of the number of electrons which are capable to be
transferred through a molecular wire from electrode L to

electrode R, i.e. the quantity NL(I) =7 . jaLk 6= =

27)

- NR (t). As far as N, (¢) is the bulk characteristic, it
varies slightly in the course of the ET through a
molecular wire. It means that the P, (f) has a minor
distinction from equilibrium Fermi distribution function
n(Ey) = {exp|EL, - E)/ksT]+ 1} (28)
where Ep is the Fermi energy of electrode. This let one
put B, ()0 n(ELk) in right part of Eq. (27) and thus

N = -x.]] [1- P,)

m=1

Sy Bol-5,)0 (- Bo).

m=2

(29)

Rate constants X, and X follow from Eq. (27) at
P, n(ELk) and read as

2 i
Xo-= DTI z |VLk|2<u |U >2n(ELk)
kpp'

«wlE ) r(Em - B - By, (30)
and
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Analogously, one can derive a complete set of equations
for all site occupancies £, (¢) . For instance,

R®= -+ &)RO[ [1- £,0)

. - B0 mRo 1- 20).

m=1 m#2

It is clearly seen from Egs. (27) and (32) that just

nonlinear factors [] m(l- Pm(t)) caused by extremely

(32)

strong Coulomb repulsion between the transferred electrons
are responsible for possible blocking the ET process.
Similar situation appears e.g. at resonant electron
tunneling in semiconductor heterostructures [12].

In conclusion, we note that the approach proposed in

the present paper gives possibility to derive different
form of nonlinear kinetic equations for one—particle
distribution functions if only the characteristic time of
transfer process exceeds strongly the characteristic times of
relaxation processes within electronic terms of the QS.
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