СРАВНЕНИЕ ДИСТИЛЛЯЦИОННОГО И КРИСТАЛЛИЗАЦИОННОГО РАФИНИРОВАНИЯ НЕКОТОРЫХ СИСТЕМ ОСНОВА-ПРИМЕСЬ

А.И. Кравченко

Национальный научный центр «Харьковский физико-технический институт», Харьков, Украина E-mail: alex@krawa.net

Установлен аналитический вид зависимости выхода g, при котором дистилляция и нормальная направленная кристаллизация двойной системы имеют одинаковую эффективность от коэффициентов распределения: $g = \alpha^{1/(k-1)}$ при $\alpha < 1$, k > 1 и $g = k^{1/(\alpha-1)}$ при $\alpha > 1$, k < 1 (α и k — коэффициенты межфазового распределения примеси при дистилляции и при кристаллизации соответственно). Вычислены значения д для ряда систем основа-примесь: Ge-Al, Te-Se, Te-Pb, Ge-Be, Ge-Si, Ge-Ga, Ge-As, Ge-B, Zn-Cd (< 0.1; ≈ 0.1 ; ≈ 0.5 ; ≈ 0.6 ; ≈ 0.7 ; ≈ 0.7 ; ≈ 0.8 ; ≈ 0.8 и ≈ 0.8 соответственно).

Дистилляция и кристаллизация являются основными методами получения высокочистых веществ, и для достижения лучших результатов целесообразно сочетание этих методов. Продуктом рафинирования может быть как конденсат или кристалл (при дистилляции или кристаллизации соответственно), так и остаток, причём важным фактором является выход продукта [1].

Установлено, что для некоторых рафинируемых систем (для которых $\alpha < 1$ и k > 1 или $\alpha > 1$ и k < 1) более эффективным может быть или дистилляция, или нормальная направленная кристаллизация - в зависимости от выхода (а и к - коэффициенты распределения примеси межфазового дистилляции и кристаллизации; $\alpha = C_2/C_1$ и $k = c_2/c_1$, где C_1 и C_2 – концентрации примеси в жидкости и паре, c_1 и c_2 – концентрации примеси в жидкости и соответственно). концентраций примеси в продуктах, полученных тем или другим методом, определяется уравнениями [2]:

при $\alpha < 1$ и k > 1 (продукт дистилляции – конденсат, продукт кристаллизации - тигельный остаток)

$$\frac{C_{k}}{C_{\alpha}} = \frac{\left(\frac{G}{G_{0}}\right)^{k}}{1 - \left(1 - \frac{G}{G_{0}}\right)^{\alpha}},\tag{1}$$

при $\alpha > 1$ и k < 1 (продукт дистилляции – остаток, продукт кристаллизации – кристалл)

$$\frac{C_k}{C_{\alpha}} = \frac{1 - (1 - \frac{G}{G_0})^k}{(\frac{G}{G_0})^{\alpha}},$$
(2)

где C_k и C_{α} – концентрации примеси в продуктах, полученных кристаллизацией или дистилляцией соответственно; G/G_0 – выход.

Для системы с указанными соотношениями между а и k может существовать значение g выхода G/G_0 при превышении которого эффективным становится тот или другой метод рафинирования. При G/G₀ > g в системах, для которых $\alpha < 1$ и k > 1, более эффективной является дистилляционная очистка $(C_k/C_q>1)$, а в системах, для которых $\alpha > 1$ и k < 1 – кристаллизационная $(C_k/C_\alpha < 1)$ [2].

Целью работы было нахождение аналитического вида зависимости д от коэффициентов распре-

При $G/G_0 = g$ эффективности обоих методов одинаковы, т. е. $C_k/C_\alpha=1$, и уравнение (1) преобразовывается к виду:

$$1 = \frac{g^k}{1 - (1 - g)^\alpha}$$

или

$$1 - (1 - g)^{\alpha} = g^{k} .$$
(3)

 $1\hbox{-}(1\hbox{-}g)^\alpha = g^k \ . \eqno(3)$ Учитывая, что g < 1, пользуясь разложением выражения $(1-g)^{\alpha}$ в ряд и ограничиваясь двумя слагаемыми, получаем: $(1-g)^{\alpha} = 1-\alpha g$.

Тогда (3) преобразуется к виду: $\alpha g = g^k$, откуда

$$g = \alpha^{1/(k-1)}$$
 при $\alpha < 1, k > 1.$ (4)

Подобным образом (2) преобразовывается к

$$g = k^{1/(\alpha-1)}$$
 при $\alpha > 1, k < 1.$ (5)

Характер зависимости $g(\alpha,k)$ поясняет табл. 1, построенная по уравнению (4) при $\alpha < 1, k > 1$.

В этой таблице большинство значений д заметно отличается от нуля и единицы, в то же время при некоторых значениях α и k значения g близки к 0 или 1, и тогда преимущественным методом рафинирования является практически один из Отметим, что вследствие подобия методов. уравнений (4) и (5) перестановка местами символов α и k в табл. 1 превращает её в таблицу зависимости $g(\alpha,k)$ по уравнению (5) при $\alpha > 1$, k < 1.

Расчётные значения д

Зависимость $g(\alpha,k)$ при $\alpha < 1, k > 1$ (по уравнению (4))

α	g при различных значениях k						
	k=2	k=5	k=10	k=20	k=50	k=100	
0,01	0,01	0,32	0,60	0,78	0,91	0,96	
0,02	0,02	0,38	0,65	0,81	0,93	0,96	
0,05	0,05	0,47	0,72	0,85	0,94	0,97	
0,10	0,10	0,56	0,77	0,89	0,96	0,98	
0,20	0,20	0,70	0,84	0,92	0,97	0,98	
0,50	0,50	0,84	0,93	0,96	0,99	0,99	

В табл. 2 приведены значения g для некоторых систем с известными значениями α и k [3], вычисленные по уравнению (4) и (5). Также указаны интервалы значений G/G_0 , в которых находится g, полученные численным методом по уравнениям (1) и (2) с шагом 0,1. Значения g, вычисленные по уравнениям (4) и (5), находятся в интервалах значений g, полученных по (1) и (2), или близки к ним – кроме значений g вблизи 0 и 1, не важных для практического применения. (Отметим, что в уравнениях (1)-(5) α = C_2/C_1 , в то время как в [3] α = C_1/C_2).

Итак, уравнения (4) и (5) дают аналитический вид зависимости д от межфазовых коэффициентов распределения α и k. Эти уравнения полезны для сравнения эффективности дистилляции кристаллизации некоторых веществ (для которых $\alpha < 1, \ k > 1$ или $\alpha > 1, \ k < 1)$ с целью оптимизации технологических схем их рафинирования. Эти уравнения также могут использоваться для оценки неизвестного коэффициента межфазового распределения (например α) по известному значению другого коэффициента (соответственно k) и значению д. Можно также отметить, учитывая [4], что уравнения (4) и (5) применимы для сравнения и других процессов с фазовыми переходами из фазы с интенсивным перемешиванием – при замене α и k на соответствующие коэффициенты распределения.

Tue terrible sha terrible									
		g							
Рафинируе- мая система	по (4) при α<1, k>1	k>1	Метод, имеющий пре-						
(основа- примесь)	или по (5) при α>1, k<1	или по (2) при α>1, k<1	имущество при G/G ₀ >g						
Ge-Al: α=1,8; k=0,06	0,03	0,10,2	Кристаллизация $(\alpha > 1, k < 1)$						
Te-Se: α=2; k=0,1	0,10	0,10,2	Кристаллизация $(\alpha > 1, k < 1)$						
Te-Pb: α=10; k=0,001	0,46	0,40,5	Кристаллизация $(\alpha > 1, k < 1)$						
Ge-Be: α=5,6; k=0,08	0,58	0,60,7	Кристаллизация $(\alpha > 1, k < 1)$						
Ge-Si: α=0,2; k=5,5	0,70	0,70,8	Дистилляция (α<1, k>1)						
Ge-Ga: α=7,7; k=0,1	0,71	0,70,8	Кристаллизация $(\alpha > 1, k < 1)$						
Ge-As: α=16,7; k=0,02	0,79	0,80,9	Кристаллизация (α>1, k<1)						
Ge-B: α=0,03; k=20	0,83	0,80,9	Дистилляция (α<1, k>1)						
Zn-Cd: α=10; k=0,2	0,84	0,90,95	Кристаллизация $(\alpha > 1, k < 1)$						

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Г.Г. Девятых, Ю.Е. Еллиев. *Введение в теорию глубокой очистки веществ*. М.: «Наука», 1981, 320 с.
- 2. А.И. Кравченко. Эффективность очистки в дистилляционном и кристаллизационном процессах // Неорганические материалы. 2010, т. 46, №1, с. 99.
- 3. Л.А. Нисельсон, А.Г. Ярошевский. Межфазовые коэффициенты распределения (Равновесия кристалл-жидкость и жидкость-пар). М.: «Наука», 1992, 399 с.
- 4. А.И. Кравченко. О распределении примесей при фазовых переходах из фазы с идеальным перемешиванием // ВАНТ. Серия «Вакуум, чистые материалы, сверхпроводники». 2011, №6, с. 28-30.

Статья поступила в редакцию 03.07.2013 г.

ПОРІВНЯННЯ ДИСТИЛЯЦІЙНОГО І КРИСТАЛІЗАЦІЙНОГО РАФІНУВАННЯ ДЕЯКИХ СИСТЕМ ОСНОВА-ДОМІШКА

О.І. Кравченко

Установлено аналітичний вид залежності виходу g, при якому дистиляція і нормальна направлена кристалізація подвійної системи мають однакову ефективність від коефіцієнтів розподілу: $g=\alpha^{1/(k-1)}$ при $\alpha<1$, k>1 і $g=k^{1/(\alpha-1)}$ при $\alpha>1$, k<1 (α і k — коефіцієнти міжфазового розподілу домішки при дистиляції та кристалізації відповідно). Розраховані значення g для ряду систем основа—домішка: Ge-Al, Te-Se, Te-Pb, Ge-Be, Ge-Si, Ge-As, Ge-As, Ge-B, Zn-Cd (<0,1; $\approx0,1$; $\approx0,5$; $\approx0,6$; $\approx0,7$; $\approx0,7$; $\approx0,8$; $\approx0,8$ і $\approx0,8$ відповідно).

COMPARISON OF DISTILLATION AND CRYSTALLIZATION REFINING OF SOME BINARY SYSTEMS

A.I. Kravchenko

The analytic view of the yield g (when the efficiency of distillation and normal directional crystallization are equal) from coefficients of distribution have been ascertained: $g = \alpha^{1/(k-1)}$ at $\alpha < 1$, k > 1 and $g = k^{1/(\alpha-1)}$ at $\alpha > 1$, k < 1 (α and α are coefficients of distribution at distillation and crystallization correspondingly). The values of α for line of systems (Ge-Al, Te-Se, Te-Pb, Ge-Be, Ge-Si, Ge-Ga, Ge-As, Ge-B, Zn-Cd) have been calculated (α 0,1; α 0,1; α 0,5; α 0,6; α 0,7; α 0,7; α 0,8; α 0,8 u α 0,8 correspondingly).