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It was received the rate of chaotization for pseudolinear mapping. It was shown that the rate of chaotization is 
proportional to the dimension of the phase space and maximal Lyapunov exponent. It  was shown also that the 
problem of  the  rate  of  chaotization  is  not  correct  and  must  be  regularized.  It  was  investigated  also  the  two-
dimensional dynamical system stability in the case of two and three step periodical standard maps. The stability 
conditions were obtained. The analytical expressions of the bounders of stability regions were written. It had been 
shown that the summary region of stability is expanded, when compared to the case of the one-step map, but the 
number of stable points decreases.

PACS: 05.45.Ac

INTRODUCTION
The  problem  of  chaotization  of  deterministic 

mechanical  system arose  after  the  kinetic  theory  was 
built. This theory aims at a mechanical explanation of 
thermodynamical  processes  [1,2].  It  was  found  some 
decades  ago  that  a dynamical  chaos  arises  also  in 
dynamical systems with a small number of degrees of 
freedom [3-5].  Soon it  turned  out  that  the  dynamical 
chaos is a rule rather than an exception [6].

Since  the  equations  considered  are  nonlinear  and 
nonintegrable, the analytical results were obtained only 
in  a  few  cases.  The  majority  investigations  of  the 
dynamical  chaos  rely  upon  numerical  simulation. 
However, computer calculations are badly suited for the 
treatment  of  the  most  interesting  final  stage  of  the 
chaotization. Besides this when analysing experimental 
data,  evaluating  of  perspectives  and  searching  of 
possible  ways of  optimization of  various  devices,  the 
numerical calculations considerably lose relative to the 
analytical ones in clearness.

Therefore  many  important  questions  leaved 
unanswered:
1. What is the law of the decay of correlation? Is it an 
exponential law ( )tα−exp  (only in this case we speak 
about chaotization) or is not it a more slow law 

( )γβ t−exp ( )1<γ ? Maybe this law is ever power δ−t
, ( )0>δ ?
2. What is the rate of chaotization α ? Is α  proportional 
to the maximal Lyapunov exponent or is it proportional 
to the KS - entropy? Is α  proportional to the dimension 
of  unstable  subspace  or  is  it  proportional  to  the 
dimension of all phase space?
3. Does the rate of chaotization α  depend on the initial 
indeterminacy or  on the  uncertainty of  the measuring 
device? Does α  tend to infinity when the indeterminacy 
of the initial state or the uncertainty of the measuring 

device tends to zero? If it does so what is the law of this 
tendency?
4. Does the rate of chaotization depend on the shape of 
the initial and the final region in the phase space? If it 
depends  what  complementary  condition  must  be 
imposed on the dynamical system in order to the rate of 
chaotization  was  independent  from  the  shape  of  the 
initial and the final regions?

The aim of this review is to answer above questions 
in the case of a model of the dynamical system, which 
can be solved exactly.

DECAY OF CORRELATION’S AND MIXING
We consider the dynamical system, the state of 

which at the time t  is described by a d-dimensional 
vector ( )tx



( ) ( ) ( ) ( )( )t
d

tt xxxtx ,....,, 21=
 .                                    (1)

If there is no chaos the state vector  ( )tx


 changes with 
time deterministically. The chaos means that the point 
in  phase  space  ( )tx  moves  in  a  very  complicated 
manner.  Therefore,  deterministic  description  is 
incorrect. If the chaos takes place the state of the system 
must be characterized not by the single state vector ( )tx

, but by the distribution function (the probability density 
in the phase space) ( )txf ,


. One of the manifestations of 

the  chaos  consists  in  lose  of  the  memory  about  the 
initial  state.  Moreover,  if  the  phase  volume  is 
conserved, every distribution function tends as  ∞→t  
to  the  sole  distribution  function  ( )xµ  (equilibrium 
distribution).

We  see  that  with  the  chaos  the  notions  of  the 
necessity and the randomness in some sense interchange 
their places. Namely, without the chaos the behaviour of 
the system is random in the sense that it is determined 
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by the outer relative to the system initial state ( )0x


). On 
the  contrary,  with  the  chaos  every  quadratically 
integrable  initial  distribution  ( )0,xf 

 tends  (in  the 
metric  2L ) as  ∞→t  to the same limiting distribution 

( )x


µ .
The measure of the memory about the initial state is 

the correlation
( ) ( ) ( ) ( ) ( )0,,0,, xgtxfxgtxftC


−≡ .          (2)

Here ( )f x  and ( )g x  are any two functions and the 
angle brackets mean the average over the phase space

( ) ( ) ∫
Γ

Γ
Γ

= dtx
V

tx ),(1,


ϕϕ ,                         (3)

( ) ddxdxdxxd ...21


µ=Γ ,                      (4)

( ) ( )∫
Γ

=Γ ddxdxdxxV ...21


µ .                             (5)

Thus  one  of  the  manifestations  of  the  randomness 
consists in the decay of all correlations:

( ) 0lim =
∞→

tC
t .                            (6)

With  randomness  there  occurs  a  mixing of  the  phase 
space. For the simplicity we limit ourselves to the case 
when the equilibrium distribution is homogeneous:

( ) constx =


µ .                                          (7)
In  this  case  the  mixing  means  that  after  elapse  of 
sufficiently  long time  t  the probability  ( )tP f ,Γ  that 

the state vector x  gets in an arbitrary region fΓ  of the 

phase space is proportional to its volume ( )fV Γ

( ) ( )
( )Γ
Γ

=Γ
∞→ V

V
tP f

ft
,lim .                                (8)

The  region  fΓ  plays  a  role  of  a  measuring  device, 
which determines the degree of the mixing. An error of 
the measuring device is  characterized by the quantity 

( )fV Γ . This error is the less the smaller is ( )fV Γ .
The  mixing  may  be  defined  also  as  the  decay  of 
correlations.  Indeed the probability  ( )tP f ,Γ ,  which is 
contained in the formula (8) equals:

( ) ( ) ( ) xdxtxftP ff
 Γ=Γ ∫ ,,, χ               (9)

Here ( )fx Γχ ,


 is the characteristic function of the 

region fΓ :

( )


 Γ∈

=Γ
caseoppositethein

xif
x f

f 0
,1

,



χ (10)

We note that the integral over the whole phase space of 
the characteristic function equals to the volume ( )fV Γ . 
Besides this the normalizing condition is fulfilled:

( )∫
Γ

= 1, dxtxf 
.                                       (11)

Taking into account for this remarks the condition of 
mixing (8) may be represented as decay of correlations 

( ) ( ) ( ) ( ){ } 0,,,,lim =Γ−Γ⋅
∞→ fft

xtxfxtxf  χχ . (12)

If correlations damp by an exponential law
( ) ( )ttC ⋅− αexp~           ( ∞→t )               (13)

the mixing is called a chaotization.

SETS OF ZERO MEASURE
We note that the singular (i.e. δ  - type) distribution

( ) ( )0xxxf 
−= δ                                   (14)

which corresponds to the exactly determined initial state 
tends to nothing. In this case correlations do not decay 
and there is no mixing. But such distribution does not 
correspond  to  any  physical  situation.  In  practice  the 
initial  distribution  ( )0,xf 

 differs  from  zero  in  some 

initial region iΓ  (initial indeterminacy).
"...in the problem of Cauchy the solution must  be 

unique. It must be fully determined by initial conditions 
and  consequently  quite  predictable.  How  an 
indeterminacy can arise? It turns out that the posing of 
the  Cauchy  problem  is  not  legitimate  while  chaotic 
movements  are  investigated.  This  problem  never 
corresponds to the conditions of an experiment (natural 
or numerical) because the initial conditions in principle 
cannot be absolutely exact. Therefore there is a reason 
to formulate the problem in the statistical language" [7].

In the ergodic theory in order to avoid patalogical 
situations in statistical considerations one neglects sets 
of  measure  zero.  It  means  in  particular  that  isolated 
points in the phase space are not considered. In other 
words, one treats almost all sets in the phase space. In 
formulations of ergodic theory theorems there are words 
"almost everywhere".

"Mathematicians who do not like the speculations in 
which the expressions "almost all" and "neglecting sets 
of zero measure" occur, may be objected that this is the 
only way to mathematically interpret what "as a rule" 
takes place in the nature" [8].

"The  most  important  principle  of  the  theory  of 
measure  is  a  neglect  of  sets  of  zero  measure.  In 
accordance with this principle, spaces with measure and 
their endomorphisms must be studied only disregarding 
the sets of zero measure, or, as people say, "module 0" 
(mod 0) ... often the addition "mod 0" is implied but is 
not included in the wording obviously" [9].

On the same ground the final region fΓ  cannot be a 
single  point:  it  must  have  some  positive  measure.  In 
other  words  the  uncertainty  of  the  measure  device 
cannot equal to zero.

We may  say  that  the  phase  space  consists  not  of 
points but rather of infinitesimal cells. This causes the 
drastical  change  of  properties  of  the  elements  of  the 
phase space: a point has precisely defined place and has 
no  shape.  On  the  contrary,  a  cell  has  definite  shape. 
With the lapse of time the shape of the cell  changes. 
According to the Liouville's theorem, the area of the cell 
remains  constant  under  the  natural  motion  of  the 
system.  It  becomes  more  and  more  complicated. 
Eventually it resembles a spider or a sponge. Thus the 
cell has an "age". In other words, in the theory there is 
the  time  arrow.  It  means  that  the  paradoxes  of 
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Loschmidt  [10,  p. 152]  and  Zermelo  [10,  p. 155;  17] 
disappear.

THE PSEUDOLINEAR MAPPING

As the time elapses the phase point ( )tx  intersects many 
times the Poincare section

( ) ( )tt xTx 
=+ 1                                           (15)

where ( )tx
  is the phase point which corresponds to the 

t -th intersection of the Poincare section and T  is some 
nonlinear operator. Instead of the investigation of  ( )tx  
we  shall  consider  the  sequence  of  the  phase  points 

( ) ( ) ,..., 21 xx . In other words we will pass on to discrete 
time t . 

The  dynamical  chaos is  intimately connected with 
two effects:
1) the exponential growth of infinitesimal perturbations,
2) the non linear limitation of the perturbation growth 
when perturbation increases to finite value.
The first effect is described by linearized map

( ) ( )txx jij
t

i α=+ 1 .                                      (16)

Here  ijα  are  given  constants  and  it  is  implied  the 
repeated indices are summarized from 1 to d .
In order to consider the second effect we limit ourselves 
for  simplicity  to  the  stochastic  acceleration  and  the 
stochastic diffusion. In the action-angle variables ( )θ,I  
they are described by the standard map [4]:

( ) ( ) ( )( )ttt KII π θ2sin1 +=+                       (17)
( ) ( ) ( )11 ++ += ttt Iθθ  .                                      (18)

As θ  stands under the sign of sinus we can take the 
fractional part of (18)

( ) ( ) ( ){ }11 ++ += ttt Iθθ .                                 (19)
Thus our phase space is the cylinder

( ) 1,, +≡ θθθI .                                          (20)
Now  we  replace  the  equation  (17)  by  the  more 

tractable one
( ) { } ( )( ){ }ttt KII π θ2sin1 +=+                           (21)

Doing so,  we identify  the points  0=I  and  1=I .  In 
other  words,  we  transform the  phase  space  from the 
cylinder (20) into the torus

( ) 1,1,, +≡+≡ III θθθ .                         (22)
The solution of the modified system (19), (21) is less 

stochastic  than  the  solution  of  the  previous  system. 
Indeed, if, for example, the value of  I  jumps erratically 
from zero to one, there and back, its fractional part will 
be always equal to 0.

"It  may  appear  that  it  is  a  very  special  class  of 
dynamical  systems.  But  it  is  not  so:  many important 
dynamical  systems  turn  out  to  be  nonergodic.  Their 
phase space splits into invariant tori" [11, p. 66].

Then we replace )2sin( π θ  by π θ2  for simplicity. 
Thus we obtain the pseudolinear map:

( ) ( ) ( ){ }ttt KII θπ21 +=+ ,                        (23)
( ) ( ) ( ) ( ){ }ttt KI θπθ 211 ++=+ ,                     (24)

The  pseudo  linear  map  looks  as  linear.  But  it  is 
essentially  non  linear,  as  it  does  not  admit  the 
transformation

θθ ccII →→ , .                                  (25)
The pseudo linear  map (23),  (24)  is  a  very  crude 

approximation  but  it  preserves  the  simplicity  of  the 
linearized map and, at the same time, takes into account 
the non linear limitation of the perturbation growth. In 
this  approximation  one  can  obtain  a  series  of  exact 
results. In the d-dimensional case the pseudo linear map 
has the form 

( ) ( ){ }t
jij

t
i xx α=+ 1 ,  ( )dji ,...,2,1, = .            (26) 

We  further  assume  the  coefficients  ijα  in  these 

equations to be integers. If  ijα  in (26) are integers the 
limiting distribution ( )∞,xf 

 will be homogeneous:

( ) ( ) 1, =≡∞ xxf 
µ .                                  (27)

When







+

=
k

k
ij 11

1
α                                    (28)

the pseudo linear mapping was investigated in the work 
[7].  If  1=k ,  the  transformation  (28)  is  named  the 
"Arnold's cat". The pseudo linear map arises also in the 
one-dimensional theory of a crystal [6].

THE GENERAL SOLUTION
Let the initial distribution be

( )







Γ∈= ∏

=
caseoppositein

xwhenxf ij

d

j
i
j

0

1

1 ε


.      (29)

We assume that the initial region  iΓ  is determined by 
the relations

i
j

i
jj

i
j

i
j xxx εε

2
1

2
1 +≤≤− ,   ( )dj ,...,2,1=     (30)

and the final region fΓ  is
f
j

f
jj

f
j

f
j xxx εε

2
1

2
1 +≤≤− ,  ( )dj ,...,2,1=   (31)

Then the correlation equals [12]

( ) ( ) ,,...,1
,...,2,1 1

1∑ ∏
∞

− ∞= =π
=

dmmm

d

j
jdd KmmFtC

(32)

( )
( )

( ) 




 απ

α






 απ

= ∑
∑

∑

=

−

=

−

=

−
d

k

f
jkj

t
kd

k
kj

t
k

d

k

f
jkj

t
k

j xm
m

xmi
K

1

1

1 sin
2exp

.
 

Here  ( )dmmF ,...,1  are the Fourier  coefficients of the 
initial distribution ( )xf 

:

( ) ( ) ( )∏
=

−
⋅

=
d

j

i
jji

jj

i
jj

dd xim
m

m
mmF

1
1 2exp

sin1,..., π
ε

επ

π
, (33)
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and the stroke at the sign of summation means that the 
term  021 === dmmm  is  omitted,  ( ) ij

ta −  are  the 

elements of the matrix tT − . 
With arbitrary  iΓ  and  fΓ  the evaluation of the d-

fold  sum  in  (32)  is  embarrassing.  Therefore  we 
investigate two particular cases:

1) A crude initial state and a fine measuring device

( ) ( )









=≤≤

+≤≤−
=

caseoppositein
djx

xxxifxf
j

iiii

i

,0
,...,2,10

,
2
1

2
1

,1 111 εε
ε


, (34)

fΓ  is determined by the relations (31). In this case the 
expansion  of  the  initial  distribution  function  into  a 
Furier  series  collapses  from  the  d -dimensional  sum 
into the one-dimensional:

( ) ( ) ( )∑
∞

− ∞=

=
m

imxmFxf 12exp π


.                       (35)

According to the well-known formula
( ) ( )xTfxTf  1−=                                        (36)

the evolution of correlation is determined by the inverse 
transformation 1−T . So

( ) ( ) ( )( )∑ ∏
∞

− ∞=

−

=

=
m

jj
t

d

j

t ximmFxfT 1
1

2exp απ


.  (37)

Therefore the correlation in this case equals to [26]

( )
( )

( )[ ]

( ) ( )i
d

j

if
jj

t
dm

d

l

f
lll

t

m
md

j
j

tid

mxxm
m

K

mKtC

επαπ

εαπ
αεπ

sin2cos1

sin2

1
111

11

1
1

1
1


























−=

=

∑

∏∑
∏

=

−
+

=

−
∞

=

=

−+

.
 (38)

When ∞→t
( ) ( )dLtconsttC min1 exp −⋅≤                        (39)

where minL  is the minimal Lyapunov's exponent of the 
linearized system (16).

2) A fine initial state and a crude measuring device 

iΓ is defined by the formula (30) and fΓ  is defined by 
the relations: 

ffff xxx εε
2
1

2
1

111 +≤≤− , 10 ≤≤ jx , ( )dj ,...,2,1= .  (40)

The calculations analogous to the preceding case lead to 
the following expression for the correlation [26]:

( )
( )

( )[ ]

( ) ( )f
d

k

f
d

i
kdk

t
dm

d

j

i
jdj

t
d

m
md

l
dl

ti
l

d

mxxm
m

K

xmKtC

επαπ

απ
αεπ

sin2cos1

sin2

1
1

11

1

1
2

























−=

=

∑

∏∑
∏

=
+

==

=

−+

. (41)

When ∞→t
( ) ( )dtLconsttC max2 exp −⋅≤ ,             (42)

here maxL  is the maximal Lyapunov's exponent.

We see  that  the  rate  of  chaotization  in  both  cases  is 
proportional  to the dimension of  the phase space and 
has nothing to do with the dimension of  the unstable 
subspace. If the initial state is crude and the measuring 
device is fine, the rate of chaotization is proportional to 
the  minL ,  whereas  on  the  opposite  case  the  rate  of 
chaotization is proportional to  maxL . We note that the 
rate  of  chaotization  is  nothing  to  do  with  the  KC-
entropy.  The  later  equals  to  the  sum  of  all  positive 
Lyapunov's exponents

∑
>

=
0iL

iLK .                                         (43)

We note further that the rate of chaotization depends on 
the choice of  ( )0,xf 

 and  ( )fx Γ,χ . This dependence 
disappears if

minmax LL = .                                        (44)
The last condition is fulfilled for a Hamilton system.

TWO-DIMENSIONAL CASE

In the case 2=d ,  ∞→t  the correlation 1C  takes the 
form [12]

( ) ( )

{ } { } { }( ) { } { } { }( )[ ]22

max
1222

2

1

231231

2exp
3

ggguuui

iLi

aaaaaaA

AtL
e
LshC

+−−+−=

−
−

= ∑
±

− ααε (45)

Here ga  are various sums of the form

( ) ( ) ftftiP 212122 2
1

2
1

2
1 εαεαε ±±±        (46)

with even number of minuses, and ua - the same sums 
with odd number of minuses, and

( ) ( ) iftft xxxP 1212122 −α−α= .            (47)

There is analogous expression for ( )tC2 .
Note that in the two-dimensional case

minmax LL −=                           (48)
Formula (45) shows that the decay of correlation is 

not  exponential,  but  rather  erratic.  In  contrast  to  the 
thermodynamics the correlation (45) always approaches 
zero nonmonotonically ever after elapse of an arbitrary 
long interval of time. 

However, the majoranta of correlation is exponential

( ) ( ) ( )tL
e

LshtCSup
Li max

1222

max
2

1 2exp
39

4
max

−
−

=
− ααε . (49)

We note that the multiplier before the exponent in 
(45) remains finite when 0→ε , ∞→t .

CONTINUOUS FUNCTIONS

Up to now we assumed the functions  ( )0,xf 
 and 

( )xχ  to be piece-wise constant and discontinuous. Let 
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us  now  consider  more  complicated  function  ( )xχ . 
Namely

( ) .

0
3
1

6
1

3
1

10
6
10

11

211














≤≤




 −

≤≤≤≤

=χ

caseoppositein

xifx

xxifpx

x

(50)

As to the function ( )0,xf 
 it is defined by the expression

( )




 ≤≤≤≤=

caseoppositein

xxifxf
0

10,
2
10,10, 21

   (51)
Then for the Arnold's  cat the asymptotic value of the 
correlation when ∞→t  is

( ) ( ) ,1 32 LtLt

t
BeepAtCSup −− +−=             (52)

here 
2

53ln +=L .    

We see that when p differs from unity, i.e. when the 
function ( )xχ  is discontinuous, the rate of the decay of 
correlation is L2  as before. On the other hand, if 1=p , 
i.e. if the function ( )xχ  is continuous, the decay rate of 
the correlation equals L3 . This means that infinitesimal 
change of the coefficient p provides an essential change 
of  the  correlation.  We  see  that  the  problem  of  the 
calculation of the correlation is incorrect.

REGULARIZATION OF THE PROBLEM
A mathematical problem is called to be correct in the 

sense of Hadamard if following conditions are satisfied:
1. The solution exists.
2. The solution is unique.
3. The solution continuously depends on initial data.
As  we  have  seen  in  the  preceding  section  the 

problem  of  determining  of  the  rate  of  decay  of 
correlation is incorrect. We conjecture that in this case 
the  correctness  must  be  understood  in  the  sense  of 
Tikhonov [13] rather than in the sense of Hadamard. In 
other words the problem, which is incorrect in the sense 
of Hadamard must be regularized. The regularization 
consists  in  the  reduction  of  the  class  of  admissible 
functions.  For  example,  the  problem of  Cauchy  for 
the Laplace equation becomes correct, if the solution 
is searched in the class of bounded functions [14].

In  the  case  of  the  problem  of  the  decay  of 
correlations  the  regularization  is  based  on  the  fact 
that  almost  all  chosen  by  chance  functions  are 
discontinuous  (except  of  the  set  of  zero  measure). 
This reasoning is  analogous to the conclusion about 
incommensurability of frequencies in a conditionally 
- periodical motion [15].

According  to  this  we  divide  the  phase  space 
into  cells and specify the number of particles in each cell 
[2].

In  this  case  the  rate  of  chaotization  for  two-
dimensional  phase  space  is  the  doubled  maximal 
Lyapunov  exponent  L .  More  detailed  specifying  the 

functions  ( )0,xf 
and  ( )xχ  influences  only  on  a 

multiplier before the exponent.

STABILITY OF A PERIODICAL SYSTEM
We will investigate a periodical structure in a period 

of τ  time:
NTTTT ⋅⋅⋅=τ 21                               (53)

Here N is a number of stages (steps) in that period. 
As  it  is  well  known  (see,  for  example,  [16]),  the 
question of periodical systems stability is determined by 
means of investigating of eigen value signification ρ  of 
the matrix of monodromy M̂  that satisfies the equation

01ˆ2 =+⋅⋅ρ−ρ MSp ,                            (54)
(with significant regard of the phase volume (3)). Here 
M̂ –  is  a  matrix  of  monodromy  that  displaces  the 
solution of equation (54) in a period of time

τ=⋅ jjij xxM 0ˆ .                                        (55)

It is supposed [16] that 
φ=ρ ie                                                    (56)

and for the phase φ  we have the equation

MSp ˆ
2
1cos ⋅=φ .                                     (57)

Real meaning of φ  corresponds to the conditions of 
system stability, e.g. the condition of stability is:

2ˆ2 ≤⋅≤− MSp .                                   (58)

For determination of the value MSp ˆ⋅  we will find two 

solutions for the system (16). The first solution ( )It
jx  is 

for such initial conditions is

( ) 10
1 =

I
x , ( ) 00

2 =
I

x .                            (59)

Then, from (55) follows that

( ) 111 M̂x
I

=τ                                           (60)

The second decisión for the system (16) ( ) IIt
jx made up 

for the following initial conditions

( ) 00
1 =

II
x , ( ) 10

2 =
II

x .                              (61)

Then, from (55) follows that

( ) 222 M̂x
II

=τ  .                                          (62)

Consequently

( ) ( ) III
xxMSp ττ +=⋅ 21

ˆ  ,                            (63)
and the periodical structure conditions of stability can 
be written as

( ) ( ) 22 21 ≤+≤− ττ III
xx                           (64)

It is recalled that in the case of the standard map [4,6], 
the conditions of stability have the following aspect

04 ≤≤− k .                                              (65)
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TWO STEP PERIODICITY
We will now investigate the periodic map T  with a 

period  of  time  τ ,  which  consists  of  two  successive 
standard maps

21 TTT ⋅=τ  ,                                             (66)
here

( )2,1
11

1
=





+

= q
k

k
T

q

q
q  .            (67)

The conditions of stability in this case are

1
2
111 2121 ≤+++≤− kkkk .                      (68)

We have to note that the inequality (68) is symmetrical 
in relation to the substitution of the members 21 kk ⇔ , 
e.g. in relation to the order of 1T  and 2T  in (66).

Fig. 1. The stability regions

In the plane ( )21kk  in Fig. 1, the stability regions of 
the  periodical  structure  (66),  determined  by  the 
inequality  (68),  are  pointed out  in  shaded  lines.  [The 
square formed by the points (0,0), (-4,0); (0,-4), (-4,4) 
represents  the  stability  region  of  nonperioducal 
structure].

In  our  opinion,  interesting  results  were  obtained: 
some  stable  points  standing  in  the  boundary  of  an 
nonperiodical  structure  [for example, the points  (-3, 
-1); (-1, -3) become unstable, but at the same time, some 
unstable points  [for instance, the points (1, -1); (-5, -3); 
(3-, -5); (-1,1) become stable. In other words, in the case 
of  a  periodical  map,  there’s  a  change in  the  stability 
conditions in the standard map.

THREE STEP PERIODICITY MAP

This time, we’ll investigate the periodical map τT  (
τ  –  is  any  period),  which consists  of  three  steps.  In 
order to get obvious results of stability regions on the 
plane, we’ll consider only one variant, when two steps 
coincide, i.e.

211 TTTT ⋅⋅=τ                                          (69)

Following  the  mentioned  scheme  of  the  calculations 
MSp ˆ⋅  we can obtain  the  stability  conditions  for  the 

variant (69):

( )( ) 11313
2

! 1
2
111

2 ≤+++++≤− kkkk
k

      (70)

The stability regions on the plane ( )12 , kk  are indicated 
in Fig. 2 as the shaded regions
The  boundary  curves  of  the  stability  regions 
conformable to the sign of the equality (70) are given by 
the following equations:

1
22

1
2 +

+−=
k

k     (the curves A),            (71)

3
22

1
2 +

+−=
k

k     (the curves B).                   (72)

Fig. 2. The regions of stability

Therefore,  the  horizontal  rect-line  22 −=k  and  two 
vertical  rect-lines  11 −=k  and 31 −=k  represent  the 
boundary lines. Notice that the obtained results do not 
depend on the step order in (69).

In Fig. 2, we can see that two points, just (-3,-4); and 
(-1, 0) standing on the boundary of stability square (65) 
of two inperiodical maps, become stable in the case of 
periodical  maps  with  the  same  steps  T1 and  T2. 
Therefore, the other two points, just (-3, -5) and (-1, 1) 
standing  outside  of  the  stability  square  of  the 
inperiodical  map  stability,  fall  on  the  bounds  of  the 
stability regions of the three step periodical map.

In our opinion, it’s interesting the decay of the one 
stability region (65) in the three stability regions in the 
case of the three-step periodicity. (We could regard that 
in the case of two-step periodicity,  such regions were 
only two). The points (-3,3) and (-1,1) of the bounders 
of the stability regions crossing are interesting too. The 
investigation of the region around these two points in 
the case of small disturbances  qk  in the ( )2,11 =lT  
shows that if the significance of disturbances falls into 
in the stability regions, it means that the additions in the 
right  part  of  (57)  decreases  the  module  of  its 
signification,  e.g.  to  convert  the  equalities  (58)  into 
inequalities.
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CONCLUSIONS
As this paper is divided into two sections two groups 

of conclusions are made. The first group of conclusions 
concerns the decay of correlations. They are:

1. The  decay  of  correlations  is  going  in  a 
complicated non-exponential way.

2. The  majoranta  of  the  correlation  function  is  an 
exponent.

3. The  problem  of  the  rate  of  chaotization  is 
incorrect in the sense of Hadamard: the rate of the decay 
of correlation depends on the smoothness of the initial 
and the final functions.

4. We conjecture that the algorithm of regularization 
of  this  problem consists  in  dividing  phase  space  into 
cells and then specifying a number of particles in each 
cell.

5. The  rate  of  chaotization  is  proportional  to  the 
dimension of the phase space. 

6. 1n  general  the  rate  of  chaotization  essentially 
depends  on  the  initial  and  the  final  functions.  This 
dependence disappears if the system is invariant under 
the time inversion. In that case the rate of chaotization is 
proportional to the maximal Lyapunov exponent.

The  second  group  includes  the  conclusions  about 
stability  of  periodical  mapping.  The  two-dimensional 
dynamical system stability was investigated in the case 
of two- and three-step periodical maps. The conditions 
of stability were obtained. The influence of periodicity 
of standard maps on the stability of chaotic dynamical 
systems  was  investigated.  In  the  case  of  a  two  step 
periodical  mapping  there’s  a  change  in  the  stability 
conditions  in  the  standard  map:  some stable  points 
standing  in  the  boundary  of  an  inperiodical  structure 
become unstable, but at the same time, some unstable 
points  become  stable.  In  the  case  of  the  three-step 
periodicity it’s interesting the decay of the one stability 
region (65) in to the three stability regions.

However,  the  most  interesting,  to  our  opinion,  is: 
internal points from the squire of stability (65) of one-
step mapping, there are the point (-2,-2) in Fig. 1 and 
the point (-1,-1) and (-3,-3) in Fig. 2 do not correspond 
to absolute stability. But these point correspond to one 
step mapping with k=1,-2 and -3 there are, for the stable 
value  of  k.  Therefore  the  stability  of  these  points 
depends  from  the  meaning  of  perturbations  (which 
appear  in  any  moment).  So  we  can  make  such 
conclusion: mapping (28) with integer k has no points 
of absolute stability.
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