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The dynamics of charged particle transition through a stochastic layer generated by a split separatrix is investigated on 
an example of mathematical pendulum motion with damping under acting of external periodic disturbance. It is shown 
that such layer has properties of an effective potential barrier, which can prevent to transition of charged particles 
through it. The dwelling time of particle in such layer can be anomalous large. 
PACS:  05.45.–a, 45.50.–j

1. INTRODUCTION
Under development of dynamic chaos in a Hamiltonian 

system all phase space is broken to regions with random and 
regular  behavior.  The  investigation  of  boundaries  of  the 
regions,  which  separate  random  behavior  from  regular, 
demonstrates  that  these  boundaries  are  fractal  and  have 
property of "sticky".  The result  of which one can be the 
apparent violation of second law of thermodynamics [1].

The interaction of a wave-particle type plays the main 
role  for  beam problems.  Most  important  point  of  such 
interaction is the point of a qualitative change of particles 
motion nature. At this in the phase space the trajectory of 
particle  passes  through separatrix.  In  real  situations the 
separatrix  is  split,  more  often,  while  as  generating  the 
stochastic  layer.  The  nature  of  particle  motion  inside 
region of split separatrix and outside it differs essentially.

In  the  present  paper  the  features  of  charged  particle 
transition  through  a  split  separatrix  are  investigated 
analytically and numerically on the model of mathematical 
pendulum with damping and with external high frequency 
disturbance. 

Besides it  is  considered the case of excitation by the 
beam of monochromatic wave at the case of Cherenkov’s 
effect; and the features of beam particles’ dynamics are 
analyzed at such excitation.

2. PROBLEM STATEMENT. THE BASIC 
EQUATIONS

The problem about interaction of charged particles with 
a field of electromagnetic waves is  the primary goal in 
accelerator theory and in plasma theory.  So, at  charged 
particle capturing by the field of electromagnetic waves, 
and also at escaping from the capture the particle should 
pass separatrix region, which separates captured particles 
from transient-time. The separatrix is, practically always, 
split.  For  analysis  of  dynamics  of  particles  motion,  if 
there is a split separatrix, it is convenient to use the model 
of mathematical pendulum with damping  ν , on which 
the external periodic force of amplitude h  acts 

ẍν ẋsin x=h sin t ,   =ω/ω0  .
(1)

In absence of damping and disturbance the Hamiltonian 
of mathematical pendulum is:  
H 0  ẋ , x =1 /2 ẋ2−ω0

2cos x ,  where  ω0  - 
frequency of small oscillations. On a phase plane of such 
pendulum  the  separatrix  separates  infinite  invariant 

curves for transient-time particles from closed curves for 
captured particles.

The presence of external force ( h≠0 ) at ν  =0 leads 
to 
splitting of separatrix and appearance in its neighborhood 
a stochastic layer. Width of this layer is proportional to 
disturbance [2]. In the case  h=0 at  ν> 0 point  ẋ=0 , 

x=0  is stable focus. If  h=0 ,  ν  < 0 the particle 
motion should become infinite. The damping ( ν ≠0 ) at 
h≠0  can  lead  to  disappearance  of  splitting.  Using 

Melnikov’s method  (see for example, [3]) it is possible to 
show, that the splitting of separatrix is saved, if the value 
of damping fulfills to inequality

νπ h /4 ch π / 2 . (2)
From (2) follows, that the stochastic layer generated by 

an  external  disturbance,  is  collapsed  much  faster  at 
disturbance  with  large  frequency  ( π  >>1),  than 
stochastic layer generated by low frequency disturbance. 
This result is in full compliance with results of papers on 
modulation diffusion [3-6], and also with results of paper 
[7].  We  shall  compare  the  passing  time  for  separatrix 
region when there is an external disturbance and when it 
isn’t.  At  external  disturbance  ( h =0)  the  change  of 
maximum velocity of particle on small times ( ν t << 1
 ) can be evaluated by formula 

Δ ˙xmax=− ˙ymax⋅ν
2 t ,  (3)

where  y  t   satisfies  the  equation  of  mathematical 
pendulum ÿsin y=0 .

3. THE RESULTS OF NUMERICAL 
ANALYSIS

The  transition  of  particles  through  separatrix  was 
investigated  by  numerical  solution  of  equation  (1)  for 
different values of parameters  h ,  ν ,   and various 
initial conditions. The initial conditions for  ν0  were 
selected  on  invariant  curves  outside  of  separatrix,  for 
ν0 s - inside separatrix (see Fig. 1).

Fig.1. Initial conditions for particles ( V 0 min =–
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V 0 max ):
а) ν0 , V 0 max =2.3; b) ν0 , V 0 max =1.7

On the  Figs.  2,3  the  typical  dependencies  of  particle 
motion velocity on time, and the time of passing  through 
separatrix  for  different  values  of  damping  v  without 
disturbance h=0   are shown.

 

 a

b
Fig. 2. a) dependence of particle velocity on  time ;

 b) distribution of trapping time for transient-time particles;
at values ν =0.0025, V0 max =2.3, h=0

 a

b
Fig. 3. a)dependence of particle velocity on  time ;  

b) distribution of time for particles exit  from trapping;
 at values ν  = -0.0025, V0 max =1.7

The change of maximum particle velocity, as it is visible 
from these plots, is well described by the formula (3). 

If there is an external periodic disturbance one can see the 
splitting of separatrix and dynamics of particle motion changes 
essentially.  At  first,  the  particle  can  move  chaotically, 
becoming whether trapped or transient-time (see Fig. 4).

a

b
Fig. 4. Dependence of particle velocity on  time: 

а) ν =0.0025, V0 max=2.3, h=0.23, Ω=1.5;
b) ν =-0.00075, V0 max=1.7, h=0.23, Ω=1.5

The  character  of  its  motion,  and  also  the  values  of 
velocities  getting  by  a  particle,  do  not  depend  on  the 
dissipation  sign;  and  for  all  run  time  (t  ~  4000)  the 
maximum  values  of  velocities,  accessible  by  particle, 
practically did not vary. Spectrum of its motion is wide, 
and the correlation function droops rapidly (see Fig. 5). 

Fig.5. Spectrum and correlation function of particle  
velocity;

ν  = -0.00075, V0 max =1.7, h =0.23, Ω =1.5
Secondly, except for such "long-lived" chaotic motion, one 

can  see  regimes,  when the  motion  of  particle  is  regular, 
though has multifrequency character (see Fig. 6).

a

b
Fig. 6. a) dependence of particle velocity on  time ;

b) distribution of trapping time for transient-time particles;
at values ν=0.0025, V0 max=2.3,h=0.23, Ω=1.8

Most important peculiarity of such motion is the fact, that 
despite of the availability of damping particle for all run 
time  remains  transient-time  and  does  not  fall  into 
stochastic layer, while without an external disturbance the 
particle becomes trapped during the time that is smaller 
almost on the order. The motion of such particles has line 
spectrum,  and  the  correlation  function  oscillates  with 
slowly drooping amplitude.

3. BEAM-PLASMA INTERACTION
The  dynamics  of  motion  of  thin  electron  beam  with 

radius b interacting in conditions of Cherenkov's resonance 
with  the  magnetized  plasma  waveguide  with  radius  a, 
under acting of the external periodic electrical field with 
given  amplitude  Ez=E0cos(ω0t),  is  investigated.  For  thin 
beam  it  is  possible  to  neglect  the  effect  of  beam 
stratification in the field of wave. The system is placed into 
a strong magnetic field, so that the motion of beam and 
plasma particles is one-dimensional. Besides, let’s consider 
that plasma is linear.

The universal non-linear set of equations, describing the 
dynamics  of  excitation  of  plasma  waves  by  electron 
beam, is well-known [8]. It is easily possible to take into 
account the presence of the external monochromatic field 
of given amplitude, by introducing additional addend into 
equation of motion of beam electrons [9].

The numerical solution of a non-linear set of equations 
was carried out at fixed density of beam and plasma. Linear 
increment  was  equal  δ=0.05,  initial  velocity  of  beam 
ν0=V0/Vph=1.0.  As  far  as  δ<<  ΔΩ (ΔΩ=1.0  –  distance 
between harmonics), is possible to use only single-mode 
approximation  for  a  field.  The  initial  values  of  field 
amplitude are: Rе E = Im E = 2 10- 4.
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The results of numerical solution of the set of equations 
are shown on Figs. 7, 8 for various values of external field 
amplitude 0 0 pheE / m Vε ω= . In these figures one can see 
the  dependencies  of  field  amplitude  on  time,  power 
spectrum Sω, and correlation function Cf of oscillations at 
ε0=0  -  Fig.  7,  at   ε0=0.063,  Ω=0.0015 -  Fig.  8, 
accordingly. 

How  one  can  see  from  the  plots  (see  Fig.  7)  the 
exponential  increasing  of  amplitude  of  the  field  with 
linear  increment  δ,  change into oscillations conditioned 
by phase oscillations of bunch of beam particles, trapped 
by  wave.  The  frequency  of  oscillations  is  about  δ, 
modulation depth of amplitude is, approximately, half of 
maximal [9]. 

s
Fig.7. Amplitude of external field ε0=0

Spectrum  of  oscillations  has  narrow  peak  on  the  base 
frequency  and  two satellites  with  shifting  of  frequency 
~δ=0.05.

The correlation function, oscillating on the base frequency, 
droops slowly during the time. Physically such behavior of 
correlation function can be explained by such a way. 

At the beam motion in the field of wave with oscillating 
amplitude, the stochastic instability of motion develops [10]. 
The stochastic instability acts first of all on particles located 
in a stochastic layer in vicinity of separatrix. While the basic 
group of particles which are generating a bunch, is far from 
separatrix in islands of stability. Therefore, the influence of 
neighboring non-linear resonances on motion of bunch is not 
enough, and also the smoothing of  amplitude oscillations 
occurs with characteristic time, which is much more than the 
time of splitting of particles’ motion correlations. 

The presence of the external signal (Ω=0.0015, ε0=0.063) 
significantly changes the dynamics of instability. At first (see 
Fig.  8),  as  well  as  in  the  previous  case,  the  exponential 
increasing of  field amplitude,  limits  by trapping of beam 
particles into potential well of excited wave. The level of this 
field exceeds the level, necessary for overlapping non-linear 
resonances between field of wave and external field. Under 
the influence of the external field there is a misalignment of 
motion of beam bunch and of fundamental wave. It leads to 
more fast chaotization of beam particles motion and, in turn, 
to chaotic modulation of field amplitude (300<τ). Spectrum 

of the field, though has a maximum on a base frequency, is 
notably  widened.  The  correlation  function  of  this  field 
droops during the time fast enough.  

4. CONCLUSIONS
Thus, the stochastic layer, which is generated in vicinity 

of separatrix, can have the property of a potential barrier, 
which resists the passing of particles through it. 

Fig.8. Amplitude of external field  ε0=0.063, Ω=0.0015

The properties of this stochastic layer essentially depend 
on moving direction of particles (transient-time - trapped, 
entrapped - transient-time). Moreover, the stochastic layer 
is less transparent for the passing transient-time - trapped 
and is more transparent for the passing trapped - transient-
time.  The  lifetime  in  the  stochastic  layer  can  be 
anomalously  big.  This  result  is  in  the  good  agreement 
with results of work [1].
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ОСОБЕННОСТИ ПРОХОЖДЕНИЯ ЧАСТИЦ ЧЕРЕЗ РАСЩЕПЛЕННУЮ СЕПАРАТРИСУ
В.А. Буц, А.П. Толстолужский

На примере  движения  математического  маятника  с  затуханием под  действием внешнего  периодического 
возмущения  исследована  динамика  прохождения  заряженной  частицы  через  стохастический  слой, 
образованный  расщепленной  сепаратрисой.  Показано,  что  такой  слой  обладает  свойствами  эффективного 
потенциального барьера, который может препятствовать прохождению заряженных частиц через него. Время 
нахождения частицы в таком слое может быть аномально большим.
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ОСОБЛИВОСТІ ПРОХОДЖЕННЯ ЧАСТИНОК  ЧЕРЕЗ РОЗЩЕПЛЕНУ СЕПАРАТРИСУ
В.О. Буц, О.П. Толстолужський

На  прикладі  руху  математичного  маятника  із  загасанням  під  дією  зовнішнього  періодичного  збурення 
досліджена  динаміка  проходження  зарядженої  частинки  через  стохастичний  шар,  утворений  розщепленою 
сепаратрисою.  Показано,  що  такий  шар  має  властивості  ефективного  потенційного  бар'єру,  який  може 
перешкоджати проходженню заряджених частинок через нього. Час знаходження частинки в такому шарі може 
бути аномально великим.
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