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We construct O(4)-invariant hydrogen wave function in coordinate representation.
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The symmetry mentioned above is the famous O(4)-
symmetry of the nonrelativistic hydrogen atom, which 
was transformed by V.A. Fock from the hidden form to 
the explicit one [1]. Fock considered the problem at the 
wave-function level:  he pointed out  that  Schroedinger 
equation in omentum representation is nothing else as 
the  defining  property  of  the  4-dimensional  spherical 
harmonics.

At the operator level this symmetry was well known 
long  ago:  10  years  before  Fock  the  hydrogen  energy 
was quantized by W. Pauli [2] just using two conserved 
operators - orbital momentum L

 and Laplace vector K
 . 

As was shown by V. Bargmann [3] both are generators 
of the O(4)-symmetry.

For more than 60 years still remains without answer 
the question - how to see this symmetry immediately in 
coordinate representation? Aside of a simple curiosity 
this question is also of practical meaning because it is 
more easy to work with symmetric quantities.

Indeed, what is the symmetry? In a simplest case it 
is an independence of the function on the corresponding 
variable.  For  example,  an  axial  symmetry means  that 
function has not angle ϕ among its arguments. Another 
example, isotropy, means that the mentioned axis may 
be rotated in an arbitrary mode -- now the angle θ drops 
out of consideration. The isotropic function depends not 
on three variables x,y,z but only on the one combination 
of
them  222 zyxr ++= .  Just  this  contraction  is  the 
main cause of most simplifications when working with 
symmetric entities.

Let us turn to the hydrogen problem. Its Hamiltonian

rZempH /2/ 22 −=            (1)

is explicitly isotropic. This property is usually used to 
separate the angles from radius, factorizing the spherical 
function Ylm(θ,ϕ) from the radial Rnl(r) one.

But  then  the  Fock  symmetry  becomes  completely 
elusive: indeed, O(4)--symmetry mixes the states with 
different  values  of  the  quantum number  while  during 
separation  of  the  angles  this  number  is  kept  fixed. 
Therefore  our  goal  may be  achieved  only  in  the  one 
way: to find the wave function of the given energy state 
without  expanding  in  the  partial  waves  --  it  must  be 

some linear combination of the ''standard'' radial-angular 
solutions.

First  we  separate  the  asymptotic  factor  exp(-λr) 
bearing in mind that state is bound, E<0, and λ=(2mE/

2 )1/2. Schroedinger equation takes on the form 
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where  we  have  introduced  the  dimensionless  radius 
rR 

λ=  and  insert  the  notation  vZe /2=ξ  for  the 
dimensionless Coulomb parameter.

Axially  symmetric  wave  function  )(RΦ  must  not 
depend on the angle ϕ. Thus, two possible arguments R-
z and R+z remain. The wave function, which depends 
only on one of them u=R+z1,

 )()( ufR =Φ ,    (3)

has a property being constant on the paraboloid u=R+z 
-- displacements along its surface do not change it.

One  of  these  displacements  is  motion  along  the 
''parallel'' and is simply a rotation around the z-axis; it 
generates the axial symmetry mentioned above. But the 
other  one  --  displacement  along  the  ''meridian''  --  is 
something new. Parametrizing the paraboloid as

R=ucos2τ,    z=usin2τ          (4)

we can change the angle τ by arbitrary additive: τ→τ+δ. 
The  τ is  that  same  third  angle  needed  for  the  4-dim 
symmetry!

To ''liberate'' the z -axis it is sufficient to write the 
argument  as  RRu


µ+=  using  unit  vector  µ.  No 

property will be lost, only the axis of the paraboloid will 
change its direction, now pointing along that vector.

It is not difficult to treat the positive energies: the 
asymptotic factor will be exp(ikr) with k=(+2mE/ 2 )1/2 

dimensionless radius becomes to be rkR 
=  and u=ik(r+

µr).
1 The choice v=R-z is also possible but gives nothing 
new because of parity conservation.
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Unlike  to  momentum  representation,  where  Fock 
symmetry  is  realized  differently:  on  the  sphere  when 
E<0 and on the hyperboloid when E>0 (see [3,4]), in 
our case all the wave functions are living on the same 
paraboloid
independently on the sign of the energy.

It  must  be  mentioned  that  in  classical  limit  this 
paraboloid obtains a simple visual sense:  it  represents 
the surface, whose interior is unattainable for positively 
charged particles falling on the nucleus.

Another  interesting  and  important  property  is  that 
homogeneous  flux  of  particles  falling  inside  of 
paraboloid, after being gathered in its focus is diverging 
in space according to Rutherford law:

dN/dΩ∼[sin(θ/2)]-4 .  (5)

 This property explains a mysterious coincidence of the 
quantum  and  classical  cross-sections  for  Coulomb 
scattering (for more details see [5]).

APPENDIX: SOLUTIONS IN EXPLICIT FORM

Here some technical questions are sampled together.
Equation (2) under assumption (3) takes on the form

0)()()1()( ''' =Φ−Φ−+Φ uuuuu η ,      η=1-iξ.  
   (a.1)

Its solution for the bound states ( iξ=n=1,2,…) is simply 
a Laguerre polynomial
       

)1;1()()( 111 unFuLu nn −==Φ −         (a.2)

where  F11(a;bu) is  degenerate  hyper-geometric 
function.

Despite  of  its  simplicity,  this  expression  contains 
much  information.  Its  expansion  in  Legendre 
polynomials
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generates  all  the  radial  functions 
)222;1()2()( 11 RlnlFRRR l

nl +−+=  belonging to the n-th 
energy level. For example, the n=3 wave function
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contain  all  the  three  angular  states  S,P,D: 
)(cos)(~)(cos)(~)(~

221103 θθ PRRPRRRR ++=Φ  with 
well-known radial functions:
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Fourier-transformation of the considered solutions
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after evaluation
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coincides with appropriately transformed expression of 
V. Fock.
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