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We considered the radiation of electric, magnetic and toroidal dipoles uniformly moving in unbounded medium.
It turns out that the radiation intensity crucially depends on the mutual orientations of their symmetry axes and the
velocity. The behavior of radiation intensities in the neighbourhood of the Cherenkov threshold 8 = 1/n is
investigated. The frequency and velocity regions are defined where radiation intensities are maximal. The

comparison with previous attempts is given.
PACS: 12.20.-m, 41.60.Bq

1. INTRODUCTION

To our best knowledge, the electromagnetic field
(EMF) arising from the motion of electric and magnetic
dipoles in medium was first considered by Frank [1,2]
who solved Maxwell's equations in the laboratory frame
(LF) with electric and magnetic polarizations. Formulae
describing the intensity radiation for a moving magnetic
dipole did not satisfy Frank, as the intensity radiation
did not disappear for the case when the dipole velocity
coincided with the phase velocity in medium (the
vanishing of the above radiation is intuitively expected
and is satisfied, e.g., for a moving electric dipole). In
1952, another Frank's publication [3] on the same
subject appeared. In it, he treated the magnetic dipole as
consisting of two magnetic poles and obtained a correct
expression (in the sense mentioned above) for the
intensity radiation of a magnetic dipole moving in
medium. To reconcile the results of [1,2] and [4], Frank
suggested that transformation laws between the electric
and magnetic moment moving in medium should differ
from that in vacuum. This problem has been
reconsidered by Ginzburg [4] who, starting with the
Maxwell equations in a moving medium and writing the
corresponding constitutive relations between the EMF
strengths and inductions, obtained the correct vector of
magnetic polarization. In 1984, two further publications
by Frank [5] and Ginzburg [6] appeared. The difference
between [1,2] and [3] was attributed to different
definitions of magnetic dipoles used there: the electric
current magnetic dipole and magnetic dipole composed
of magnetic poles was used in [1,2] and [3],
respectively. These two models of magnetic dipole
possess different properties as to their interactions with
magnetic medium and external EMF ([7]). At present,
both experiment and theory definitely support that
magnetic moments of elementary particles are of the
electric-current type.

In Ref. [8], the radiation of toroidal moment (i.e., the
elementary (infinitely small) toroidal solenoid (TS))
aligned along the velocity was considered. It was shown

that the EMF of the TS moving in medium extends
beyond its boundaries. This seemed to be surprising
since the EMF of TS resting either in medium (or
vacuum) or moving in vacuum is confined to its interior.
In one of the latest lifetime publications [9], Frank
returned to the initial idea ([1,2]) that the transformation
laws between the dipole electric and magnetic moments
moving in medium should be the same as in vacuum.

The goal of this consideration is to obtain EMF
potentials and strengths for the point-like electric and
magnetic dipoles and elementary TS moving in medium
with an arbitrary velocity v, which may be greater or
smaller than the light velocity in medium c,. We
postulate that in the reference frame attached to a
moving source we have static distribution of charge and
current densities. In the laboratory frame, relative to
which the source moves with a constant velocity, the
charge and current densities are obtained via the Lorentz
transformations, the same as in vacuum. The further
procedure is in a straightforward solution of the wave
equations for the EMF potentials with the laboratory
frame charge-current densities in their r.h.s. and in a
subsequent evaluation of the EMF strengths. Formerly,
in the time representation, this was done in [10]. The
present consideration is just the translation of [10] into
the frequency language, which is extensively used by
experimentalists.

The question arises why not to use Frank's idea for
the evaluation of EMF of the moving dipole. In our
translation from Russian, it may be formulated as
follows ([3], p. 190): It is suggested that a moving
electric dipole p;” is equivalent to some dipoles at rest,
namely, to the electric p; and magnetic m; placed at the
point coinciding with the instantaneous position of a
moving dipole. The same is suggested for a magnetic
dipole".

The reason for not using the transformation formulae
for the electric and magnetic dipole moments moving in
media is that there are different formulations of the
moving media electrodynamics leading to different
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transformation laws for electric and magnetic
polarizabilities and, therefore, for the electric and
magnetic moments (which are the space integrals of
polarizabilities). Even more confusing is the situation
with toroidal moments for which the transformations
formulae are not known.

Where the obtained exact expressions for EMF's can
be applied to? First, any particle having either electric
or magnetic dipole moments should radiate when its
velocity exceeds the light velocity in medium. Then,
exact results presented here give the frequency
distributions of arising EMF's. Second, EMF's obtained
in Sect. 2.2 can be observed in neutrino experiments. As
far as we know, the neutrino possesses both dipole and
toroidal magnetic moments. In the massless limit only
the toroidal moment survives. This is valid, in
particular, for Majorana neutrino.

2. UNBOUNDED MOTION OF MAGNETIC,
TOROIDAL AND ELECTRIC DIPOLES IN
MEDIUM

2.1 RADIATION OF MAGNETIC DIPOLE
UNIFORMLY MOVING IN MEDIUM

2.1.1. Lorentz transformations of charge-current
densities
In what follows, we need the Lorentz transformation
formulae for the charge-current densities. They may be

found in any textbook on electrodynamics. Let 'Ch and
j " be charge and current densities in the rest frame §',

which moves with a constant velocity v relative to the
laboratory frame (LF) S. Then,
Pen= Y@t B/ /0

- =

S N T 2.1

j=t BV—ZB(BJ)+ VP

Here y= (1-p*)"%, B=v/c.

charge density in §", then
Pe=¥8i e, =V Jo= o 22

where jH and j, are the components of j parallel and

If there is no

perpendicular to v . If there is no current density in §'
, then

Pen=VPes J = VWP 2.3)

2.1.2. The magnetic moment is parallel to the velocity

Consider a conducting loop £ moving uniformly in a
medium with the velocity v directed along the loop
symmetry axis (coinciding with the z axis). Let in this
loop a constant current / flows. In the reference frame
attached to the moving loop, the current density is equal
to

IE 1;%5(p'— dlp(2), p'= X2+ ¥ 24

177

(x', y',Z' are the coordinates in S’ .) In accordance
with (2.2), one gets in the LF

J= Ind(p - d)ly(z-vo))=

- 2.5
§n¢a(p - .
Here 1;; : ;;ycos(p - ;xsin(p, V= 1/ 1-B*. Since the

current direction is perpendicular to the velocity, no
charge density arises in the LF.

The current density j may be expressed through the
magnetization
j=curl M.

The magnetization Af is perpendicular to the plane
of a current loop:

M, = %o (d-p)5(z- vi).

Now, let the loop radius d tends to zero. Then,
0(d-p)- na*(xa(y)
2
M, - b1z v
y
jx = aMz/ay’.]y = - 6Mz/ax’jz = O'
The Fourier components of the current density are
Jlw)=0M [0)/dy,
Jilo)z =M (0)/8x, j.le)= 0.

where M_(0)= fy”s(x)s(y)exp(im) and ¥ = kzff.
\4

The energy emitted in the radial direction per unit

(2.6)

length per unit frequency equals zero for V< ¢, and

3.2
W m |l 5
b T 2 2.2.2° V7 Cue

vcyyn

Formerly, this equation was obtained by Frank [3],

2.7)

but without the factor y2 in the denominator. It is due

to the factor Y in the denominator of (2.5). We
suggested that the current density is equal to (2.4) in the
reference frame attached to a moving current loop. The
current density in the LF is obtained from (2.4) by the
Lorentz transformation. On the other hand, Frank
suggested that, in the LF, the charge density coincides
with (2.5), but without the above Y factor. It follows
from (2.7) that the intensity of radiation produced by the
magnetic dipole parallel to the velocity differs from zero

in the velocity window ¢, < V< C.Therefore, V

should not be too close either to €, or C. For this, 7

should appreciably differ from unity. Probably, the best
candidate to observe this radiation is a neutron moving
in medium with large 7. By comparing (2.7) with the
radiation  intensity of a  moving  charge

0,= ezwu /czyi) , we see that there is a chance to

observe neutron radiation only for very high frequen-
cies.



2.1.3. The magnetic moment is perpendicular to the
velocity

Let the current loop lies in the z=0 plane with its
velocity along the x-axis. Then, in the rest frame S,

RIS T
= - L0 Y 5()5(p - d
-]x d py (Z) (p )’

I, x ' ' X '
]y:;();c_yé(z)é(p -d), J. = 0, Doy = 0
Here p' = (x'z n y'2)1/2

laboratory frame

1
Jo= - 2L (2)s(p - d),

. According to (2.2), in the

1
Pen =~ ﬁyVW(Z)é(P - d)-

1/2 .
Herep = (x - vt) 2 y*+ y*| . The charge density
arises because on a part of the loop, the current has a
non-zero projection on the direction of motion. It is easy

to check that

d
jx = [Oyé(z)a_Mz’
Y

. 1 d
Jy = ‘oné(z)aMz,

. W 0
Jx I() _26(2)_Mz’
c Iy
where M_= 0 (d -p ) . In the limit of an infinitesimal
loop (d - 0) ,

M_=0(d-p)- 8(x-ve)s(ynd® 1y

and
Jo= 1nas (=) (x- ve) (),
dy
o= rnars(2)s( ) 26 (- v
y y2 0 I x ?
Y ij
P = Lond —26(2)5(x- vt)—é(y).
c 0y

The Fourier components of these densities are

1,d’
o) = B explip Jo()-L ),
v Y
. d2
o)z -2 Tl enl ) @8
vy
1,d’
palo) = 255(2Jexpli ) [).
c dy

Here |, = kx/B . The energy flux through the

cylindrical surface of the radius p, (co-axial with the

motion axis), per unit length per unit frequency is equal

to zero for v< ¢, and
m>k* 0 n?

2mep va“W

o(w,(p) = sin’ g + (n2 - 1)2 coszq)g (2.9)

for v> ¢, . The integration over ¢ gives

m2k> 0 n [ 2.10)

2l

ofo,0)= 245 i (02 - 1)
2epvyP I
Equations (2.9) and (2.10) coincide with ones
obtained by Frank [3] who noted that in the limit

B - 1/n, these intensities do no vanish as it is

intuitively expected. On these grounds, Frank declared
them as to be incorrect. 30 years later, Frank returned to
the same problem [5]. He attributed the non-vanishing
of intensities (2.9) and (2.10) to the specific polarization
of medium.

We analyze this question in some detail. Intensities

(2.9) and (2.10) are non-zero for p = 1/n+ € and zero
for B =1/n-¢, where ¢ << 1. Further examination
shows that for B = 1, the radiation intensities are one

half of (2.9) and (2.10). Again, neutron moving in
dielectric medium with » appreciably different from
unity, is the best candidate to observe this radiation. The

n

absence of the overall 1/Y factor in (2.10) makes easier

to observe radiation from the neutron with the spin
perpendicular to the velocity than from the neutron with
the spin directed along it.

2.2. ELECTROMAGNETIC FIELD OF THE
POINT-LIKE TOROIDAL SOLENOID
UNIFORMLY MOVING IN MEDIUM

Consider the poloidal current flowing on the surface
of a torus equation of which in the rest frame is
2
p'-d)+ 2= R
(R, and d are the minor and large radii of torus).

It is convenient to introduce the coordinates
p'=d+ Rcosy, z=R'siny . In these
coordinates, the poloidal current flowing on the torus
surface is given by

6(R0 - R') -

—-———*nh,.
v
d+ R,cos|

Here is the vector 7, = 7, cosy - n, sinl  lying on

J' o

the torus surface in a particular ¢ = const. plane and

defining the current direction, R' = 1/(p' -d )2 + 72,

The cylindrical components of j are

.. 8(R,- R . ap'-d
S S s Rl B = R - R

Jz ]0d+ R, cosy cosy ]06( 0 ) Ry’ )

o 6(RO_R,) . o _ . Z'

Jo = Jod+ R, cosy siny = ]oé(Ro R)Ropy'

2.2.1. The velocity is along the torus symmetry axis
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Let this current distribution move uniformly along
the z-axis (directed along the torus symmetry axis) with
the velocity V. According to (2.3), in the laboratory
frame, the no vanishing charge and current components
are

. -d
o " ]oVB EpR 6(Ro - R)’

0

z- vt

jp 2 ——— 6(R0_R)’
0

. _ .. p-d )

J: = JoY 0R, 6(Ro R)-

Here R-= \/(p - d)2+ (z— v1)2y2

may be represented in the form
oz foar) gy = - L
pap My

where

. These components

o, ),

_ B9
o dp

o1
M, = 'Joyp_@ (Ro B R)'
The Cartesian components of )/ are
, .
= Joyple(Ro_R)’ My: _]oyp_zo

Then,

(Ro - R)~

M

V4

Jo7

] .
RGN P
Let the minor torus radius R, tend to zero. Then,

mR;

1 aM
v o0z

o(R,- R) - 5(p - d)d(z- vt)

and

<

) i;nRza—@ 0 - d)3(z- vi),

y

j;nR 0 00 - dy(z-vr).
Therefore,

Ji =

1LoM,
V2 0z yd T ozx
_LOM, oy 0 0
I P e I P
oM, oM, _
0x _W_
L
G '3
_E M, oM
C

o Jo - p2
= 2O RS %
J: d 0

)9 (0 - d)(z-w),

B]o 2
= — Xy 2R X
Pen I x 0)/ ) cd 0
02
)9 (p - d)d(z- o).

a 2
G=t
Ix’
Let the major torus radius also tend to zero. Then,
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@(d' p): ﬂd25(x)5(y) and

joz - Iodneg O (s )
0z0x
iy Lol bl
j.z j R d<—+ a—)6( ()5 (- o).
I i _
Pon = n Rod(a 2 )5( ) ( )6(2 vi).
X

Fourier transforms of these densities are

32 3’
——(—+—)D — (=t —)D,
pch( ) (x iy 5D, j. ( ) 2% (6 6y )
. ikm, 9 _ ikm, 0
Jx =7 2.2, Jyo T 202 3.
2%y 0x 28%y% 0y
where

_ 7 JydR; - .
m = A gl y)exsli). v = .
The energy loss through the cylinder surface of the
radius P coaxial with the motion axis per unit

frequency, per unit length is zero for V< ¢, and

Km’(,» )
0,(0)=—=B,-1n -1 (2.11)
p ( ) EVB 3 (B )( )
for v> ¢, . Formerly, this equation has been obtained

in [8]. The absence of overall 1/Y factor in (2.11) and

its proportionality to ()° show that the radiation
intensity for the toroidal dipole directed along the

velocity is maximal for large frequencies and V= C.

2.2.2. The velocity is normal to the torus axis

Let a toroidal solenoid move in medium with the
velocity perpendicular to the torus symmetry axis. For
definiteness, let the TS move along the x-axis. Then, in
the LF

w2 - vt
Pan =" 10211 Z(xp—lz‘})B(Rl - Ro)
e, y_ (x-vt) R-R
.]x R plz 6(1 )
. 2vd(R-R) p d 3R - R,)
y Oplz R >Jz 0

It is easy to check that

S 0M, M,

Jx PP > Jy PP

j:LaMy_aMx :_B_aMy

Toy? dx oy T 0z
where



X~ vt

M, = - joy O(R R)

y
1

12@ (Ro - Rl)’ M,

1

Mx:jO :O'

Let the minor radius R, of a torus tend to zero.
Then,

0(R,- R)=nRA(p,- d)i(z)

and
M= -5, Lo la-p Jl:]
M= ™ ofa-p i)
Therefore,
ooz - BIR S g (ap Jol2)
o2 B Do (- ()
jye - P 0 ol
xR (- p e,

Now we let the torus major radius d also tend to

zero. Then

nd’

0(d-p,)= ——8(x-ve)a(y),
. 2 2 2
oz - PR 0 5 b (x)a(2),
o  dxdy
. 2 2 2
I U T YT
y dxdz
o JJUdRy 07
Jy = 7\/ 0y026(x vi)d(x)3(z),
2dR2 1 92 942

jox A gt Rl wla(al,

The Fourier transforms of these densities are

o - AREE D exply Jo (5l
oz PR expln Jolo ()
iy = - 20O D enpln Jelo ()
jor B L genpliy Jo[3ol)

+
2 yPox® dy

Here | = kx/B. The

cylindrical surface of the radius 0, per unit length per

energy flux through the

unit frequency is equal to zero for V< ¢, and

5 2

O(w,(p)' ( -1) En cos? (p+B—s1n @H(z 12)

2¢ any
for v> ¢, . The integration over § gives
k’m? 1
O'(Q)): —‘2(712- 1)2 n’+ 5
2evpmy B
As far as we know, radiation intensities (2.12) and
(2.13) are obtained here for the first time. They are

discontinuous: in fact, they fall from the values given by
(2.12) and (2.13) for B, > | to one-half of these values

for p=1/n and to zero for B < 1/n. Also, we
observe the appearance of the velocity window

(2.13)

¢, < v<c where the radiation differs from zero.
Following to the Frank terminology, we conclude that
the magnetic dipole parallel (perpendicular) to the
velocity polarizes the medium in the same way as the
toroidal dipole perpendicular (parallel) to the velocity.

2.3. UNBOUNDED MOTION OF A POINT-
LIKE ELECTRIC DIPOLE

Consider an electric dipole consisting of point-like
electric charges:

0, = ed3(r+ an)-83(r- an)l. (2.14)

Here r defines the dipole center-of-mass, 2a is the
distance  between  charges and the  vector
n= (sinf, cosg,,sinb,cosp,,cosf,)  defines

the dipole orientation. Let the dipole move uniformly
along the z axis. Then,

P, - ey{é(x+ anx)é()ﬁ an},)é((z- vt)y + anz)

- 5(x- anx)é(y— an),)6((z- vy - anz)}, (2.14%)

and j, = VP ,. Let the distance between charges tend

to zero. Then,

p, = Zea(nD )5(x)6(y)5(z- vt), J. Wy,
Here_z

. . N |- )
(n0 )= wlenD el 0=

The Fourier components of these densities are

-

0 (0)= 2 (n0 Js(xJa(y)expliv), /@)= v ).

1%
The radiation intensity per unit length of the

cylindrical surface coaxial with the motion axis, per unit
azimuthal angle and per unit frequency equals
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myk n_n, 5
0,.10,0)= 1- X
P((p ) n2£B3vy ( BV!)
' 1 . (2.15)
Mgk k2)s LKk,
al V. I
for v< ¢, and
m’k’ ~
o, (o) = e - )lp: - 1)+
nj(l- Bz)+ ﬁanZH—y ]Ei(sj - 1)(J02 +t N2+ (2.16)
1
J12 t le)' V_(NONI * JOJI)]}
for v> c,. Here m, = 2ea is the electric dipole

moment in the reference frame attached to a moving
electric dipole and

n, = sineocos((p- (po), U = kz/p.

The arguments of Bessel functions are Ap / By n-
Integrating over the azimuthal angle ( one finds that

op(w)z 0 for v< ¢, and
2k3

op(w): meB v 2([32 )
[(Bi‘ l)sm 0,+ (1- 32)003290]

(2.17)

for v> ¢, . Here B o 1s the angle between the symmetry
axis of the electric dipole and its velocity. For the
symmetry axis along the velocity (9 0" 0) and

perpendicular to it (9 =n/ 2) one gets
2k3

0, (0,8=0)="4 o5 (52 - 1)fi-p2) (2.18)
and
mia’k |, )2
0,(0,0=mn/2)= W(B 2- 1) , (2.19)
respectively.

It is rather surprisingly that for B, <1, the non-

averaged radiation intensities are equal to zero when the
symmetry axis is either parallel or perpendicular to the
velocity, but differs from zero for the intermediate
inclination of the symmetry axis (see (2.21)).
Integrating over the azimuthal angle one finds that

Op(w,9)= 0 forp, <1.

Equations (2.22)-(2.24) coincide with those given by
Frank [1-3], except for the factor (1- [32) in (2.17) and
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(2.18). This is due to the fact that we suggested that the
charge distribution is given by (2.14) in the reference
frame attached to a moving dipole while Frank
suggested that (2.14) is valid in the laboratory frame.
Recently, equations coinciding with those given by
Frank were obtained in [11].

3. CONCLUSIONS

We briefly enumerate the main results obtained:

I.  We investigated how radiate electric,
magnetic and toroidal dipoles moving uniformly in
unbounded medium. It turns out that radiation
intensities crucially depend on the mutual
orientation of the symmetry axis and velocity.

II. The behaviour of radiation intensities near
the Cherenkov threshold B = 1/7 is investigated in
some detail.

III.  The frequency and velocity domains where
radiation intensities are maximal are defined.
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