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We considered the radiation of electric, magnetic and toroidal dipoles uniformly moving in unbounded medium. 
It turns out that the radiation intensity crucially depends on the mutual orientations of their symmetry axes and the 
velocity.  The  behavior  of  radiation  intensities  in  the  neighbourhood  of  the  Cherenkov  threshold  β =  1/n is 
investigated.  The  frequency  and  velocity  regions  are  defined  where  radiation  intensities  are  maximal.  The 
comparison with previous attempts is given. 
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1. INTRODUCTION
To  our  best  knowledge,  the  electromagnetic  field 

(EMF) arising from the motion of electric and magnetic 
dipoles in medium was first considered by Frank [1,2] 
who solved Maxwell's equations in the laboratory frame 
(LF) with electric and magnetic polarizations. Formulae 
describing the intensity radiation for a moving magnetic 
dipole did not satisfy Frank, as the intensity radiation 
did not disappear for the case when the dipole velocity 
coincided  with  the  phase  velocity  in  medium  (the 
vanishing of the above radiation is intuitively expected 
and is satisfied, e.g., for a moving electric dipole). In 
1952,  another  Frank's  publication  [3]  on  the  same 
subject appeared. In it, he treated the magnetic dipole as 
consisting of two magnetic poles and obtained a correct 
expression  (in  the  sense  mentioned  above)  for  the 
intensity  radiation  of  a  magnetic  dipole  moving  in 
medium. To reconcile the results of [1,2] and [4], Frank 
suggested that transformation laws between the electric 
and magnetic moment moving in medium should differ 
from  that  in  vacuum.  This  problem  has  been 
reconsidered  by  Ginzburg  [4]  who,  starting  with  the 
Maxwell equations in a moving medium and writing the 
corresponding constitutive relations  between the EMF 
strengths and inductions, obtained the correct vector of 
magnetic polarization. In 1984, two further publications 
by Frank [5] and Ginzburg [6] appeared. The difference 
between  [1,2]  and  [3]  was  attributed  to  different 
definitions of magnetic dipoles used there: the electric 
current magnetic dipole and magnetic dipole composed 
of  magnetic  poles  was  used  in  [1,2]  and  [3], 
respectively.  These  two  models  of  magnetic  dipole 
possess different properties as to their interactions with 
magnetic medium and external EMF ([7]). At present, 
both  experiment  and  theory  definitely  support  that 
magnetic  moments  of  elementary  particles  are  of  the 
electric-current type.

In Ref. [8], the radiation of toroidal moment (i.e., the 
elementary  (infinitely  small)  toroidal  solenoid  (TS)) 
aligned along the velocity was considered. It was shown 

that  the  EMF of  the  TS  moving  in  medium  extends 
beyond  its  boundaries.  This  seemed  to  be  surprising 
since  the  EMF  of  TS  resting  either  in  medium  (or 
vacuum) or moving in vacuum is confined to its interior. 
In  one  of  the  latest  lifetime  publications  [9],  Frank 
returned to the initial idea ([1,2]) that the transformation 
laws between the dipole electric and magnetic moments 
moving in medium should be the same as in vacuum.

The  goal  of  this  consideration  is  to  obtain  EMF 
potentials and strengths for  the point-like electric and 
magnetic dipoles and elementary TS moving in medium 
with an arbitrary velocity  v,  which may be greater or 
smaller  than  the  light  velocity  in  medium  cn.  We 
postulate  that  in  the  reference  frame  attached  to  a 
moving source we have static distribution of charge and 
current  densities.  In  the  laboratory  frame,  relative  to 
which the source moves with a  constant  velocity,  the 
charge and current densities are obtained via the Lorentz 
transformations,  the  same  as  in  vacuum.  The  further 
procedure is in a straightforward solution of the wave 
equations  for  the  EMF potentials  with  the  laboratory 
frame  charge-current  densities  in  their  r.h.s.  and  in  a 
subsequent evaluation of the EMF strengths. Formerly, 
in the time representation, this was done in [10].  The 
present consideration is just the translation of [10] into 
the frequency language,  which is  extensively used by 
experimentalists.

The question arises why not to use Frank's idea for 
the  evaluation  of  EMF of  the  moving  dipole.  In  our 
translation  from  Russian,  it  may  be  formulated  as 
follows  ([3],  p. 190):  It  is  suggested  that  a  moving 
electric dipole p1′ is equivalent to some dipoles at rest, 
namely, to the electric p1 and magnetic m1 placed at the 
point  coinciding  with  the  instantaneous  position  of  a 
moving dipole. The same is suggested for a magnetic 
dipole".

The reason for not using the transformation formulae 
for the electric and magnetic dipole moments moving in 
media  is  that  there  are  different  formulations  of  the 
moving  media  electrodynamics  leading  to  different 
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transformation  laws  for  electric  and  magnetic 
polarizabilities  and,  therefore,  for  the  electric  and 
magnetic  moments  (which  are  the  space  integrals  of 
polarizabilities).  Even  more  confusing  is  the  situation 
with  toroidal  moments  for  which  the  transformations 
formulae are not known. 

Where the obtained exact expressions for EMF's can 
be applied to? First, any particle having either electric 
or  magnetic  dipole  moments  should  radiate  when  its 
velocity  exceeds  the  light  velocity  in  medium.  Then, 
exact  results  presented  here  give  the  frequency 
distributions of arising EMF's. Second, EMF's obtained 
in Sect. 2.2 can be observed in neutrino experiments. As 
far as we know, the neutrino possesses both dipole and 
toroidal magnetic moments. In the massless limit only 
the  toroidal  moment  survives.  This  is  valid,  in 
particular, for Majorana neutrino. 

2. UNBOUNDED MOTION OF MAGNETIC, 
TOROIDAL AND ELECTRIC DIPOLES IN 

MEDIUM

2.1 RADIATION OF MAGNETIC DIPOLE 
UNIFORMLY MOVING IN MEDIUM

2.1.1. Lorentz transformations of charge-current  
densities

In what follows, we need the Lorentz transformation 
formulae for the charge-current densities. They may be 
found in any textbook on electrodynamics. Let '

Chρ  and 
'j


 be charge and current densities in the rest frame 'S , 

which moves with a constant velocity v  relative to the 
laboratory frame (LF) S. Then, 
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Here  cv /,)1( 2/12 
=ββ−=γ − .  If  there  is  no 

charge density in 'S , then 
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 (2.2)

where ||j


 and ⊥j


 are the components of j


parallel and 

perpendicular to v . If there is no current density in 'S
, then 

'' , ChChCh vj ργ=γ ρ=ρ 
   (2.3)

2.1.2. The magnetic moment is parallel to the velocity

Consider  a  conducting loop  L moving uniformly in a 
medium  with  the  velocity  v directed  along  the  loop 
symmetry axis (coinciding with the  z  axis). Let in this 
loop a constant current  I flows. In the reference frame 
attached to the moving loop, the current density is equal 
to 

( ) ( ) 22, yxzdnIj ′+′=ρ ′′δ−ρ ′δ= φ


  (2.4)

( zyx ′′′ ,, are  the  coordinates  in  'S .)  In  accordance 
with (2.2), one gets in the LF 
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Here  211  ,sincos β−=γφ−φ=φ xy nnn  .  Since  the 
current  direction  is  perpendicular  to  the  velocity,  no 
charge density arises in the LF.

The current density j


 may be expressed through the 
magnetization 

. Mcurlj
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=
The magnetization M


  is perpendicular to the plane 

of a current loop: 
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The Fourier components of the current density are 
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( ) ( ) ( ) ( ) .  and   exp
2
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2

β=ψψδδ
γ

=ω kziyx
v

IdM z

The energy emitted in  the radial  direction per  unit 
length per unit frequency equals zero for ncv <  and 

.   , 2222
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γγ
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Formerly, this equation was obtained by Frank [3], 
but without the factor  2γ  in the denominator. It is due 
to  the  factor  γ  in  the  denominator  of  (2.5).  We 
suggested that the current density is equal to (2.4) in the 
reference frame attached to a moving current loop. The 
current density in the LF is obtained from (2.4) by the 
Lorentz  transformation.  On  the  other  hand,  Frank 
suggested that, in the LF, the charge density coincides 
with (2.5), but without the above  γ  factor. It  follows 
from (2.7) that the intensity of radiation produced by the 
magnetic dipole parallel to the velocity differs from zero 
in  the  velocity  window  .cvcn << Therefore,  v  

should not be too close either to  nc or  c . For this,  n  
should appreciably differ from unity. Probably, the best 
candidate to observe this radiation is a neutron moving 
in medium with large  n . By comparing (2.7) with the 
radiation  intensity  of  a  moving  charge 
( )222 / ne ce γω µ=σ ,  we see that there is a chance to 
observe neutron radiation only for  very high frequen-
cies.
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2.1.3. The magnetic moment is perpendicular to the 
velocity

Let  the  current  loop lies  in  the  z=0 plane  with  its 
velocity along the x-axis. Then, in the rest frame 'S , 

( ) ( )

( ) ( ) .0   ,0   , 

   ,

''0'

0'

=ρ=−ρ ′δ′δ
ρ ′

′
=

−ρ ′δ′δ
ρ ′

′
−=

Chzy

x

jdzx
d
Ij

dzy
d
Ij

Here 2/12'2' )( yx +=ρ ′ . According to (2.2), in the 
laboratory frame 
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Here ( )[ ] 2/1222 yvtx +γ−=ρ . The charge density 
arises because on a part of the loop, the current has a 
non-zero projection on the direction of motion. It is easy 
to check that 
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where ( )ρ−Θ= dM z . In the limit of an infinitesimal 
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The Fourier components of these densities are 
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Here  β=ψ /1 kx .  The  energy  flux  through  the 

cylindrical surface of the radius  1ρ  (co-axial with the 

motion axis), per unit length per unit frequency is equal 
to zero for ncv <  and 
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for ncv > . The integration over φ  gives 
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Equations  (2.9)  and  (2.10)  coincide  with  ones 
obtained  by  Frank  [3]  who  noted  that  in  the  limit 

n/1→β ,  these  intensities  do  no  vanish  as  it  is 
intuitively expected. On these grounds, Frank declared 
them as to be incorrect. 30 years later, Frank returned to 
the same problem [5]. He attributed the non-vanishing 
of intensities (2.9) and (2.10) to the specific polarization 
of medium.

We analyze this question in some detail. Intensities 
(2.9) and (2.10) are non-zero for ε+=β n/1  and zero 
for  ε−=β n/1 ,  where  1< <ε .  Further examination 

shows that for 1=β n , the radiation intensities are one 
half  of  (2.9)  and  (2.10).  Again,  neutron  moving  in 
dielectric  medium  with  n appreciably  different  from 
unity, is the best candidate to observe this radiation. The 
absence of the overall γ/1  factor in (2.10) makes easier 
to  observe  radiation  from  the  neutron  with  the  spin 
perpendicular to the velocity than from the neutron with 
the spin directed along it.

2.2. ELECTROMAGNETIC FIELD OF THE 
POINT-LIKE TOROIDAL SOLENOID 
UNIFORMLY MOVING IN MEDIUM

Consider the poloidal current flowing on the surface 
of a torus equation of which in the rest frame is 

( ) 2
0

22 Rzd =′+−ρ ′
( 0R  and d  are the minor and large radii of torus).
 It  is  convenient  to  introduce  the  coordinates 

ψ′=′ψ′+=ρ ′ sin,cos RzRd .  In  these 
coordinates,  the poloidal  current  flowing on the  torus 
surface is given by 
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2.2.1. The velocity is along the torus symmetry axis
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Let  this  current  distribution  move uniformly  along 
the z-axis (directed along the torus symmetry axis) with 
the  velocity  v .  According  to  (2.3),  in  the  laboratory 
frame, the no vanishing charge and current components 
are
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Let the major torus radius also tend to zero. Then,
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Fourier transforms of these densities are
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The energy loss through the cylinder surface of the 
radius  ρ  coaxial  with  the  motion  axis  per  unit 
frequency, per unit length is zero for ncv < and 
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for ncv > . Formerly, this equation has been obtained 

in [8]. The absence of overall γ/1  factor in (2.11) and 
its  proportionality  to  5ω  show  that  the  radiation 
intensity  for  the  toroidal  dipole  directed  along  the 
velocity is maximal for large frequencies and cv ≈ .

2.2.2. The velocity is normal to the torus axis

Let  a  toroidal  solenoid move in  medium with  the 
velocity perpendicular to the torus symmetry axis. For 
definiteness, let the TS move along the x-axis. Then, in 
the LF 
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Let  the  minor  radius  0R  of  a  torus  tend  to  zero. 
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Here ./1 β=ψ kx  The  energy  flux  through  the 

cylindrical surface of the radius 1ρ  per unit length per 

unit frequency is equal to zero for ncv <  and
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for ncv > . The integration over φ  gives
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As far as we know, radiation intensities (2.12) and 
(2.13)  are  obtained  here  for  the  first  time.  They  are 
discontinuous: in fact, they fall from the values given by 
(2.12) and (2.13) for  1>β n  to one-half of these values 
for  n/1=β  and  to  zero  for  n/1<β .  Also,  we 
observe  the  appearance  of  the  velocity  window 

cvcn <<  where  the  radiation  differs  from  zero. 
Following to the Frank terminology, we conclude that 
the  magnetic  dipole  parallel  (perpendicular)  to  the 
velocity polarizes the medium in the same way as the 
toroidal dipole perpendicular (parallel) to the velocity.

2.3. UNBOUNDED MOTION OF A POINT-
LIKE ELECTRIC DIPOLE

Consider an electric dipole consisting of point-like 
electric charges: 

( ) ( )].[ 33 narnared
 −δ−+δ=ρ   (2.14)

Here r  defines the dipole center-of-mass, 2a is the 
distance  between  charges  and  the  vector 

( )00000 cos,cossin,cossin θφθφθ=n  defines 
the dipole orientation. Let  the dipole move uniformly 
along the z axis. Then,
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and  dz vj ρ= . Let the distance between charges tend 
to zero. Then, 
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The Fourier components of these densities are 
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The  radiation  intensity  per  unit  length  of  the 
cylindrical surface coaxial with the motion axis, per unit 
azimuthal angle and per unit frequency equals

180



( ) ( )

( )( ) 







γ

++β−
β
ρ

×β−
γε βπ

=ωφσ ρ
ρ

10
2

1
2
0

2

2
32

32

11

1
~

,

KKKKk

v
nnkm

n
n

n
zd

(2.15)

for ncv <  and
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for  ncv > .  Here  eamd 2=  is  the  electric  dipole 
moment  in  the  reference  frame attached to  a  moving 
electric dipole and 

( ) ./,cossin~
00 β=ψφ−φθ=ρ kzn

The  arguments  of  Bessel  functions  are  nk β γρ / . 

Integrating over the azimuthal angle  φ  one finds that 
( ) 0=ωσ ρ  for ncv <  and
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for ncv > . Here 0θ  is the angle between the symmetry 
axis  of  the  electric  dipole  and  its  velocity.  For  the 
symmetry  axis  along  the  velocity  ( )00 =θ  and 

perpendicular to it ( )2/0 π=θ  one gets 
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and
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respectively.
It  is  rather  surprisingly  that  for  1<β n ,  the  non-

averaged radiation intensities are equal to zero when the 
symmetry axis is either parallel or perpendicular to the 
velocity,  but  differs  from  zero  for  the  intermediate 
inclination  of  the  symmetry  axis  (see  (2.21)). 
Integrating over the azimuthal angle one finds that 

( ) 0, =θωσ ρ  for .1<β n

Equations (2.22)-(2.24) coincide with those given by 
Frank [1-3], except for the factor  ( )21 β−  in (2.17) and 

(2.18). This is due to the fact that we suggested that the 
charge distribution is given by (2.14) in the reference 
frame  attached  to  a  moving  dipole  while  Frank 
suggested that  (2.14) is  valid in the laboratory frame. 
Recently,  equations  coinciding  with  those  given  by 
Frank were obtained in [11].

3. CONCLUSIONS
We briefly enumerate the main results obtained:
I. We  investigated  how  radiate  electric, 
magnetic and toroidal dipoles moving uniformly in 
unbounded  medium.  It  turns  out  that  radiation 
intensities  crucially  depend  on  the  mutual 
orientation of the symmetry axis and velocity.
II. The behaviour of radiation intensities near 
the Cherenkov threshold  n/1=β  is investigated in 
some detail.
III. The frequency and velocity domains where 
radiation intensities are maximal are defined.
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