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The problem of the scalar pair production by a one-dimensional vector-potential Aµ(x3) is reduced to the S-matrix 
formalism of the theory with an unstable vacuum. Our choice of in- and out-states does not coincide with that of 
other authors and we argue extensively in favor of our choice. We show that the norm of a solution of the wave 
equation is determined by one of the amplitude of its asymptotic form for x3→±∞. For the constant electric field we 
obtain the scalar particle propagator in terms of the stationary states and show that with our choice of in- and out-
states it has the form dictated by the general theory.
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1. INTRODUCTION AND THE CHOICE OF 
IN- AND OUT-STATES

Pair production by an external field can be treated 
either in the framework of S-matrix formalism [1-5], or 
equivalently  by  the  Feynman  method  using  the 
propagators [1,6-8]. For the stationary potential the field 
is not switched off for t→±∞. So the reduction to the S-
matrix  formalism  requires  choosing  the  in-  and  out-
states. How to do this is briefly shown in [1]. Another 
choice  is  made in  [9]  and  accepted  in  later  literature 
[10,11].  The  correct  choice  is  especially  important  in 
dealing with higher order processes, when the answer is 
not known in advance from some other considerations. 
In  this  paper  we  argue  extensively  in  favor  of  our 
choice.  It  is  reasonable to  consider  the case of scalar 
particle separately, because the complications due to the 
spin are absent here. Besides it is useful to have all the 
stages of a more simple case before eyes, when treating 
the spinor case.

We consider  at  first  the  one-dimensional  potential 
A0(x3)  and  assume  for  the  beginning  that  the 

corresponding  electrical  field  
3

0
3 x

AE
∂
∂−=  disappears 

for x3→±∞. We use the metric

ηµν=diag(-1,1,1,1).              (1)

It  is  useful  to introduce the kinetic  energy  π0(x3)  and 
momentum π3(x3) of a classical particle defined by the 
expressions

π0(x3)=p0-eA0(x3), 2
3

2
033 )()( ⊥−= mxx ππ ,

2
2

2
1

22 ppmm ++=⊥ .  (2)

The  first  relation  in  (2)  merely  expresses  the  total 
energy conservation. We also use the notation

)()( 0
3

0
3

±=| ± ∞→ ππ xx

22
0333 )()( )(  

3 ⊥± ∞→ −±=±= mx x πππ , (3)

In contrast to [1] and [5] we assume here that the 
charge of  a  scalar particle  e=-|e|  in order  the analogy 
with  the  electron  would  be  closer.  We  are  interested 
here mainly in the states that can be created by the field 
(Klein  region).  Assuming  for  definiteness  E3>0,  we 
have in this region

20 )( ⊥>− mπ ,       20 )( ⊥−<+ mπ ,                (4)

i.e. large positive x3 are accessible only to antiparticles.
For brevity reasons we write only the wave function 

factor depending on x3. Outside the field the particle is 
free and we first classify the states by their asymptotic 
form

[ ] [ ]33
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− ∞→± ππ      

[ ] [ ]33
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3 )(exp)(2
3

xif xp +±+=| −
∞→

± ππ        (5)

The normalization  factors are chosen in that way that 
the density current along the third axis is equal to unity 
up to a sign. Two sets of functions in (5) are connected 
by the relations

ppppp fcfcf −+
+ += '

2
'
1 ,

ppppp fcfcf −+
− += '*

1
'*
2 .   (6)

The second relation can be obtained from the first one 
by  complex  conjugation.   The  current  conservation 
along the third axis gives (in Klein region) 

1
2'

2
2'

1 =− pp cc .                                  (7)

From (6) and (7) we find the reversed relations
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ppppp fcfcf −+
+ −= '

2
'*
1 ,

ppppp fcfcf −+
− −−= '

1
'*
2 .                (8)

Now we have to classify solutions as in- and out-states. 
Our choice is [1]

ppoutp f+
−− =≡ ψψ ,      ppoutp f+++ =≡ ψψ ,

p
p

p
pinp c

c
ψψψ ~

'*
2

'
2

−−− −=≡ , pp f−− =ψ~ , 

ppoutp f−
++ =≡ ψψ .             (9)

Here the ± indexes before ψ-functions indicate the sign 
of frequencies.

The heuristic argument in favor of this choice was 
based  on  the  fact  that  the  description  of  a  scattering 
process  in  terms  of  pure  states  (unlimited  vectors)  is 
only a way to a more realistic description by means of 
wave  packets.  For  the  wave  packets  the  field  is 
effectively  switched  off,  when  they  leave  the  field 
region. Consider, for example, the process described by 

pf+ , see the first relation in (6). Initially we have the 

antiparticle current with amplitude '
1pc  moving from the 

region of large positive x3 towards the field region near 
x3=0. In the opposite direction from the region of large 
negative  x3 moves  the  particle  current  with  unity 
amplitude. It annihilates completely in the field region. 
As a result we have the diminished antiparticle current 
reflected  from  the  barrier.  So  for  t→∞ there  is  only 
antiparticle  packet,  i.e.  ppf ψ−

+ = .  We  would  like  to 
remind you here that  the momentum of the negative-
frequency wave function is opposite to the antiparticle 
velocity.

In terms of in- and out-states the relations (6) and (8) 
take the form

ppppp cc ψψψ −+
+ += 21 ,

ppppp cc ψψψ −+
− += *

1
*
2 ;                   (10)

ppppp cc ψψψ −+
+ −= 2

*
1 ,

ppppp cc ψψψ −+
− +−= 1

*
2 ;                 (11)

1
2

2
2

1 =− pp cc , '
2

'
1

1
p

p
p c

c
c −= ,

'
2

2
1

p
p c

c = .           (12)

We note that in [1] the present f-functions were denoted 
as  ψ and  it  was  explained  that  after  using  the 
transformation indicated in (9) and (12) we get relations 
(10-11)  with  (new)  ψ-functions.  The  latter  relations 
coincide with those for the non-stationary solutions. Just 
on the bases of these relations the S-matrix formalism is 
build [1,5].

In terms of ψ-functions the field operator Ψ has the 
usual form

∑
∑

−+

−+

+=

=+=Ψ

p
ppoutppout

p
ppinppin

ba
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)(

)(

†

†

ψψ

ψψ

                 (13)

Here pina  is the destruction operator of a particle in the 

state  pψ+  and  −
†
pinb  is  the  creation  operator  of  an 

antiparticle  in  the  state  pψ− .  The  sum is  over  all  p 
including p in the Klein region.

In paper [9] the field operator is written as

∑
∑

+=

=+=Ψ

k
koutkoutkoutkout

k
kinkinkinkin

xnbxpa

xnbxpa

))()((

))()((

†

†

,           (14)

see  (31a),  (31b)  in  [9].  Disregarding  here  the 
normalization  factors,  the  connections  to  our  ψ-
functions are

kkinp ψ−= , kkinn ψ+= , 

kkoutp ψ−= ,   kkoutn ψ+= .                   (15)

The authors of [9] name their  pk in-function the state of 
incoming particle on the grounds that there are no other 
waves  for  x3→±∞.  In  our  nomenclature  this  is  the 
outgoing negative frequency state as explained above. 
So the disagreement is in the sign of frequencies and in 
the  in-  and  out-  labeling.  The  authors  of  subsequent 
papers [10,11] accepted the classification of [9].

Another argument in favor of our choice (9) is  as 
follows [1]. In the case of a constant electric field we 
can  work  either  with  stationary  or  non-stationary 
solutions.  For  the  latter  the  classification  of  states  is 
obvious. The experiment should be described in terms 
of wave packets and using stationary or non-stationary 
solutions  should produce the same result.  This agrees 
with the fact  that  in both cases the relations (10) and 
(11) have the same form with the same coefficients c1p, 
c2p .  By the way it  is  shown in [1]  why the strict  S-
matrix formulation is possible despite the fact that the 
constant field is not turned off for  t→±∞. The reason is 
that  for  the  given  set  of  quantum  numbers  p the 
formation length for pair production is  finite.  Outside 
this length the field does not create pairs and does not 
prevent the  S-matrix formulation as does any field that 
does not create pairs.

2. ORTHONORMALIZATION OF WAVE 
FUNCTIONS

The choice (9) assumes that ψ+  and ψ−   and also ψ+  

and  ψ−  are orthogonal. We shall show in this section 
that  this is  so.  For definiteness we assume that  (4) is 
satisfied. The Klein- Gordon equation has the form
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The J0 component of a transition current is given by the 
expression

[ ]ψψψψψψ *'
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'*'0 )(),( DDiJ −= ,

00 ieA
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D −
∂
∂= .                  (17)

For our potential A0 and functions 'pf , pf  we have
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We  consider  also  the  J3 component  of  the  transition 
current
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                        (19)

and calculate its derivatives over x3 using (16)

000
3

3
)'( JppiJ

dx
d −= .                           (20)

From here we have

[ ]∫
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d
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L

L
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iffJdx

33 3300
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),'( . (21)

For '
'

pff +=  , pff +=    we obtain (for details see [12])

∫ −−=++ )'(2),( 002'
2'

0
3 ppcffJdx ppp π δ .         (22)

So for pf+   normalized as in (5) we have (22). One can 

verify that ψ+  and ψ−  are orthogonal.

3. SOLVABLE POTENTIAL
For the potential
A0(x3)=-tanh kx3                                         (23)

the  solutions  of  the  Klein-Gordon  equation  are 
known [1]
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Here  F(α,β;γ;z) is the hypergeometric function.  π3(±) 
are real in the Klein region. Three other solutions with 

quantum  numbers  p can  be  obtained  from  (24)  by 
employing the discrete symmetry of the Klein-Gordon 
equation  [13].  Thus  )( 3xf p+  can  be  obtained  from 

)( 3xf p−  by substitution μ→-μ, 
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            (25)

)( 3xf p
+ ( )( 3xf p

− )  can  be  obtained  from  )( 3xf p−  (
)( 3xf p+ )   by  substitutions  (not  changing  the  Klein-

Gordon  equation  (16))  ,,,33 νµ →−→−→ aaxx  
)()( 00 +↔− ππ :
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The coefficients c'1p, c'2p in (6) and (8) have the form
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Two special cases are: the step potential (k→∞ in (23)) 
and  constant  electric  field  (k→0,  ∞→a , 

ConstEak == ).

4. CONSTANT ELECTRIC FIELD
In  this  Section  we  obtain  the  propagator  for  the 

scalar particle in a constant electric field and show that 
in terms of our in- and out-states it has the form dictated 
by  the  general  theory.  The  vector-potential  (23) 
reduces to

30ExA µµ δ=  ,   0
0 AA −= .                 (29)

With  this  potential  the  Klein-Gordon  equation  (16) 
takes on the form

0)(
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d λ

     (30)
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3 x
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eE
m2

⊥=λ . (31)

The  solutions,  normalized  on  unity  current,  are,  see 
Eq. (8.2.5) in [14],

)( 4/ ZeDcf i
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−

, 
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Now in the relations (6) and (8)
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and in relations (10) and (11)
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We note that  ψ−  and  ψ~−  in (9) coincide in this 
case.  According  to  (22)  to  normalize  ψp on 

)'(2 00 pp −± π δ we  have  to  replace  cp in  (32)  and 
(33) by





 −= −

8
3exp)2(

'
4/1

2

π λeE
c
c
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p
.            (36)

Thus we may assume that ψ-functions in (10) and (11) 
are normalized in this way. The same relations hold for 
non-stationary  states.  The  important  thing  is  that  the 
relations  (10)  and  (11)  constitute  all  the  necessary 
ingredients for S-matrix theory [1,5].

We note now that the relation (18) takes on the form

pppp ffZZ
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On the other hand, using (30) we find
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. (38)

Now it easy to verify that relations (19), (21) and (22) 
remain valid as well as the orthogonality of  ψ+  and 

ψ−  and also of ψ+  and ψ− .

Solutions (32), in which the factor depending on x1, 
x2,  t   is  dropped for brevity,  are  characterized by the 
quantum number  p0  (and also  p1 and  p2). If  instead of 
vector-potential  (29)  we  use  in  the  Klein-Gordon 
equation the vector-potential

ηδ µµµµ x
AExA

∂
∂−=−= −

3' , 3xtx ±=± ,   

)2/( 2
33 xtxE −=η ,        (39)

we  obtain  the  solutions  −p'ψ  characterized  by  the 

quantum number −p  see [15,16]. Of course, we can go 
back to the potential (29) and obtain

−−− =≡ p
ie

pp eAx ')( ψψψ η , )'('' Axpp −− = ψψ . (40)

Making  modifications  due  to  the  present  assumption 
e=-|e|, we have from the results in [15,16]
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−
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The factor depending on x1, x2 is dropped for brevity. So 
this is the positive-frequency out-state. To corroborate 
this  we  may  add  to  the  arguments  in  [15,16]  the 
following  physical  justification.  The  classical  particle 
with  the  negative  charge  starts  from  the  region  with 
large negative x3, is slowed down and is reflected back 
to where it comes. Its kinetic momentum π3 is negative 
and grows in magnitude for t→∞. Hence

∞→−= ∞→
−

t)( 3
0 πππ .         (42)

Going back to the quantum state (41) we note that the 
particles (antiparticles) are in the region where 0>−π  (

0<−π ). Large  −π  indicates that we are far from the 
region where pairs are created ( 0≈−π ). In the region 
where 0<−π  the wave function (41) must be small for 
small probability of pair production. Thus in this region

)( zez i −= − π ,  0<z .          (43)

Similarly,
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For positive z in (44) we have

zez iπ−=− , 0>z .              (45)

The complete set of −pψ -solutions must satisfy the 
relations (10) and (11). This gives

( ) −− ′=′ +−
+ ppp c ψπθψ 1 , ( ) 11 −−− ′−=′ −−

ppp c ψπθψ ,

( )




<
>

=
.0,0

0,1
x
x

xθ
                (46)

The  proper  time  representation  of  the  scalar  particle 
propagator for the vector-potential (39) is 17,1]
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Now we multiply (47) by 













 −+− +− ypypypi
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1exp 2211

and integrate over y1, y2  and y+, see (54). For the integral 
over y+ we have
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In the expressions (47)  and (48) the charge  e can 
have any sign. For e=-|e|  we obtain for the right hand 
side of (48) 

( ) ( )00
2sinh8coth8 ττδτπτδπ −=−

−− eEy
R

eEy , 

−−

−−

−′
+′

=
ππ
ππR ,         (49)

seE ||=τ , −

−′
=

−
+=

π
πτ ln

2
1

1
1ln

2
1

0 R
R ,

−−− += xeEp ||π , −−− ′+=′ xeEp ||π , 
−−− −′= xxy .              (50)

We note that the reversal of sign of π− and π′  does not 
change  R.  In  order  to  have  the  nonzero  δ-function 
argument, R must lie in the interval 1<R<∞ because s>0 
in (47). This is possible only in two cases

0<π−<π′− ,   i.e.  x−<x′− ;          (51)
0>π−>π′− ,   i.e.  x−>x′− .           (52)
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and similarly  for  the integral  over  y2,  we get  for  the 
case (51)
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The  relation  
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e  is  used  here,  see  (50).  We 

note  also  that  according  to  (41)  and  (44)  both 
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Making  the  inverse  Fourier  transform  of  (54)  i.e. 
multiplying it by
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Here  θ-functions take care of  the conditions (51)  and 
(52). Besides we have

,'),()'()( −−−−− >= xxπθπθπθ
−−−−− <−=−− xx'),()'()( πθπθπθ .             (57)

Taking into account (46) we obtain from (56) and (57) 
the  sought  for  representation,  which  for  the  potential 
(29) has the form

( )
( ) ( )
( ) ( )∫ 





<′

>′
=′

−−−
−

−−
+

+−

−
−

−
−

xxxx

xxxx

c
dpdpdpiAxxG

pp

pp

p ',

,',

)2(
|,

*

*

*
1

3
21

ψψ

ψψ

π
 

         (58)
One can verify [16] that  the functions defined by the 
upper and lower lines on the right hand side of (56) (and 
(58)) coincide outside the light cones
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According to (40) and (41) we have
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−− pψ  is obtained from (60) by substitution z→-z under 
the logarithm sign.

Now  we  note  that  the  classification  of  −pψ - 
functions  was  obtained  in  [15,16]  from  the  obvious 
classification of the non-stationary solutions 3pψ  by an 
integral transformation

∫
∞

∞−

−=− )(),()(
33

*
3 AxppMdpAx pp ϕψ , (61)
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33

2
2/1

3
* π .

 (62)

Inserting )(
3

Axpϕ+  in the expression on the right hand 

side of (61), we get )( Axp−
+ ψ  on the left hand side and 

so on. The reversed relations of (61) can be considered 
as  the  definitions  of  3pϕ .  For  the  vector  potential 

EtA 3
~

µµ δ−= , considered in [15,16], we have
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By analogy we expect that

∫
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where  0pϕ  differs from  0pp ψψ =  in (32) only by an 
inessential phase factor, see (69). To see that this is true 
we use first the relation

tipiizzi
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   (66)
where
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0

3 eE
pxeE +−=ς , 

eE
z

−
= π

, ee −= ,        (67)

then formula 3.462(1) in [18], the prescriptions (43) and 
(45)  and the relations between the parabolic cylinder 
functions, see 8.2(6)-(8) in [14]. Then we find
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(69)

and similar expressions for 0pϕ+  and  0pϕ− . Here Z is 
the same as in (31).

Comparing  these  functions  with  the  ones  in  (32) 
together with (36), we see that 0pϕ  coincide with 0pψ  

up to an inessential phase factor. We could get rid of 
this factor by modifying ),( 0 −ppK .

We note here that

∫
∞

∞−

−−− −= )'(),(),'( 0000* ppppKppKdp δ   (70)

and

∫
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∞−

−−−− −= )'(),()',( 00*0 ppppKppKdp δ ,    (71)

So the relation (64) can be reversed

∫
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−=− 0),( 0*0
pp ppKdp ϕψ   (72)

Using this formula we rewrite the integrals over −p  in 
(58) as follows
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The conditions on t and t' are written on account of the 
remark after (58). Thus
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By the way it is clear from (74) and (40) that

( ) ( )AxxGeAxxG xxie |,'|, ))'()(( ′=′ − ηη .         (75)

The expression (74) has the form dictated by the general 
theory [1,19].

Finally we note that it  follows from (61) and (64) 
that

∫
∞
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3

0 ),( 3
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3 pp ppNdp ϕϕ
 (76)

where
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pipieE 3
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2/1

4
exp)2( ππ          (77)

The  relation  (76)  can  be  checked  with  the  help  of 
formula  2.11.4(7)  in  [20]  which  can  be  adjusted  as 
follows
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Here )1(1 ii −=−=−  for )( *νκνκ == . So we 

insert  )(
3

Axpϕ+  into the right hand side of (76) and 
take into account that
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AxeAx p
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Then we get
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Now using (78) we obtain the right hand side of (68). 
For  )(

3
Axpϕ  we  proceed  similarly,  but  use  the 

substitution  xT −=   instead  of  xT = ,  when 
employing (78).

It is shown in [15,16] that for example −
+

pψ  can be 

obtained  from  3pψ+  by  changing  continuously  the 
gauge of the electric field potential. The same is true for 

−
+

pψ  and  0pψ+ .  For  this  reason these  functions  are 
indistinguishable  and  only  the  wave  packets  are 
observable.

It is clear that  ),( 3
0 ppN  and ),( 3

−ppM  have the 

orthogonality properties of ),( 0 −ppK , see (70) and (71).
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