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The problem of the scalar pair production by a one-dimensional vector-potential 4,(x3) is reduced to the S-matrix
formalism of the theory with an unstable vacuum. Our choice of in- and out-states does not coincide with that of
other authors and we argue extensively in favor of our choice. We show that the norm of a solution of the wave
equation is determined by one of the amplitude of its asymptotic form for x; — +o0. For the constant electric field we
obtain the scalar particle propagator in terms of the stationary states and show that with our choice of in- and out-

states it has the form dictated by the general theory.
PACS: 11.55Ds; 12.20Ds; 03.80+r

1. INTRODUCTION AND THE CHOICE OF
IN- AND OUT-STATES

Pair production by an external field can be treated
either in the framework of S-matrix formalism [1-5], or
equivalently by the Feynman method using the
propagators [1,6-8]. For the stationary potential the field
is not switched off for 7 - +co. So the reduction to the S-
matrix formalism requires choosing the in- and out-
states. How to do this is briefly shown in [1]. Another
choice is made in [9] and accepted in later literature
[10,11]. The correct choice is especially important in
dealing with higher order processes, when the answer is
not known in advance from some other considerations.
In this paper we argue extensively in favor of our
choice. It is reasonable to consider the case of scalar
particle separately, because the complications due to the
spin are absent here. Besides it is useful to have all the
stages of a more simple case before eyes, when treating
the spinor case.

We consider at first the one-dimensional potential
A°x;) and assume for the beginning that the

corresponding electrical field £3 =

Y
3 aX3

disappears

for x; — +00. We use the metric
Nw=diag(-1,1,1,1). (1

It is useful to introduce the kinetic energy TC(x;) and
momentum Ti(x3) of a classical particle defined by the
expressions

TO(0s)=p -eA(xs), M3(x3) = \M3(x3) - m?

mi = m’+ pi+ p;. @)

The first relation in (2) merely expresses the total
energy conservation. We also use the notation

T, = 10@)

T3(X3) s, 0 = T3(£) = \MG(E) - m7 5 (3)

In contrast to [1] and [5] we assume here that the
charge of a scalar particle e=-le| in order the analogy
with the electron would be closer. We are interested
here mainly in the states that can be created by the field
(Klein region). Assuming for definiteness E5>0, we
have in this region

0 2 0 2
mo(-)> mg, mo(t)< -m7, 4)
i.e. large positive x; are accessible only to antiparticles.
For brevity reasons we write only the wave function
factor depending on x;. Outside the field the particle is
free and we first classify the states by their asymptotic
form

-1/2 .

pleye - 205 explt i3 )]
t - -1/2 .
Sl ot [213(+)] "% explt im3(+)x3] (%)
The normalization factors are chosen in that way that
the density current along the third axis is equal to unity
up to a sign. Two sets of functions in (5) are connected
by the relations

o .o
+fp_clp fp+c2p fpa
_ 3% + AL -

-fp - Cp fp t Cip
The second relation can be obtained from the first one

by complex conjugation. The current conservation
along the third axis gives (in Klein region)

2 ‘ 2

Sp- (6)

=1. (7

1y ¢

From (6) and (7) we find the reversed relations
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Now we have to classify solutions as in- and out-states.
Our choice is [1]

- - _ + _+ _+
wp= wpout'*rfpa wp= wpout' fp’

-‘// pE-(ﬂpin = _C?Tp-Wp,‘WP:'fP,

+wa+tIJpoul:-fp° (9)

Here the + indexes before w-functions indicate the sign
of frequencies.

The heuristic argument in favor of this choice was
based on the fact that the description of a scattering
process in terms of pure states (unlimited vectors) is
only a way to a more realistic description by means of
wave packets. For the wave packets the field is
effectively switched off, when they leave the field
region. Consider, for example, the process described by

+ /p, see the first relation in (6). Initially we have the

antiparticle current with amplitude Ci » moving from the

region of large positive x; towards the field region near
x5=0. In the opposite direction from the region of large
negative x; moves the particle current with unity
amplitude. It annihilates completely in the field region.
As a result we have the diminished antiparticle current
reflected from the barrier. So for #—oo there is only

antiparticle packet, i.e. + /,= ¥ ,. We would like to

remind you here that the momentum of the negative-
frequency wave function is opposite to the antiparticle
velocity.

In terms of in- and out-states the relations (6) and (8)
take the form

- + -
+lljp_clp wp+62p ¢lp7

_ox g * _
—wp'Cprp+clpwp; (10)
+ ok
wp - clp+wp- ch-wp:
_‘/jp:_c2p+‘/jp+clp—wp; (11)
2 2 a

‘Clp‘ _‘Czp‘ = l,clp:_j,

p
o = 1
2p T . (12)

We note that in [1] the present f~functions were denoted
as w and it was explained that after using the
transformation indicated in (9) and (12) we get relations
(10-11) with (new) w-functions. The latter relations
coincide with those for the non-stationary solutions. Just
on the bases of these relations the S-matrix formalism is
build [1,5].
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In terms of y-functions the field operator ¥ has the
usual form

Y :z (apin+wp+b;in-wp):
p

. ) (13)
= z (ap()ut ‘/’p * b;aut ‘/fp)

P
Here @pin is the destruction operator of a particle in the
state +¢ » and b;m- is the creation operator of an

antiparticle in the state -¥ ,. The sum is over all p
including p in the Klein region.
In paper [9] the field operator is written as

Y = Z (Qgin Prin )+ B,y (X)) =

. ) (14)
= Z (akoutpkout (x)+ blloutnkout(x))

see (3la), (31b) in [9]. Disregarding here the
normalization factors, the connections to our -
functions are

i _t
Prin~ wk’ Nin = wk’

15)

The authors of [9] name their py i,-function the state of
incoming particle on the grounds that there are no other
waves for x;—zoo. In our nomenclature this is the
outgoing negative frequency state as explained above.
So the disagreement is in the sign of frequencies and in
the in- and out- labeling. The authors of subsequent
papers [10,11] accepted the classification of [9].

Another argument in favor of our choice (9) is as
follows [1]. In the case of a constant electric field we
can work either with stationary or non-stationary
solutions. For the latter the classification of states is
obvious. The experiment should be described in terms
of wave packets and using stationary or non-stationary
solutions should produce the same result. This agrees
with the fact that in both cases the relations (10) and
(11) have the same form with the same coefficients ci,,
¢y . By the way it is shown in [1] why the strict S-
matrix formulation is possible despite the fact that the
constant field is not turned off for ¢ +oco. The reason is
that for the given set of quantum numbers p the
formation length for pair production is finite. Outside
this length the field does not create pairs and does not
prevent the S-matrix formulation as does any field that
does not create pairs.

Prout™ - ‘ﬂ ks Mhow™+ w ke

2. ORTHONORMALIZATION OF WAVE
FUNCTIONS

The choice (9) assumes that . and -¢ and also +t//

and "§ are orthogonal. We shall show in this section

that this is so. For definiteness we assume that (4) is
satisfied. The Klein- Gordon equation has the form



042 0
7L 2ed%p0 + A2+ pE- mEOf, ()
L ; (16)

; 0
X ellplxl+p2x2_Pt =0

The J° component of a transition current is given by the
expression

J°6 9= i "Dy - g )|

I .
DO: E'ler. (17)

For our potential 4° and functions f » Jp we have
1= [0+ pO-2ea ()| £, =
r 0 10 )1,

We consider also the J; component of the transition
current

(18)

u

L)z ‘if;%f,}
3

1
T R G "
=-inf, —f - f. —f,
E Poxy 77 TP dxg pH
and calculate its derivatives over x; using (16)
d .0 0y 70
—Jy= i -p)J
& (p-p")". (20)
From here we have
Lu .
l
I dx3']0(f':f): ﬁ[']3 L, J; X3=‘Ld]' 21
a3 P p

For f=.fy ,/=+fp we obtain (for details see [12])

0 _ P 0_ 0
[ @5 et )= e, 218 =00 @)

So for +fp normalized as in (5) we have (22). One can

verify that 'y and ¢ are orthogonal.

3. SOLVABLE POTENTIAL

For the potential
A°(x3)=-tanh kX3

the solutions
known [1]

-fp(x3):

(23)
of the Klein-Gordon equation are

1 CRAGEE

s
X F(=il = v + A ,-if + v + 45200 + 1;2)

-z = 2 LT3 (=) = 2kp T3(+) = 2k,

2
Va1 ke [ Lofeef

ea 24
pRlrn! (24)

Here F(a,f,y,z) is the hypergeometric function. 78(%)
are real in the Klein region. Three other solutions with

quantum numbers p can be obtained from (24) by
employing the discrete symmetry of the Klein-Gordon

equation [13]. Thus +/»(¥3) can be obtained from
- /p(x3) by substitution p—-s,

L) (- 2yt (1= )

ms (25)

x F(u-iv +A,ip + v+ 1520 + 1;2)

" f,(x3) (" f,(x3)) can be obtained from -/p(x3) (
+ /p(x3)) by substitutions (not changing the Klein-

Gordon equation (16)) X3 - -X3,a- -a,fl -~ V,
%)« 1°¢+):
WACHE 2" -z«
M3 () (26)
X F(=ip = v+ Aip - iv + A=2ip + 1,271
Sy (x3) (2" -z«
2 5(+)) 27)

X F(=if + v+ A,ip + v + 15200 + ;271

The coefficients ¢'i,, ¢ in (6) and (8) have the form

o= M) Mg + 1 (2iv)
WA TG v A v+ -

Coo M) @i+ Dr(-2v)
N O TG - A G- r1-4)

Two special cases are: the step potential (k— in (23))
and constant electric field (k-0, d- ©
ak = E = Const).

4. CONSTANT ELECTRIC FIELD

In this Section we obtain the propagator for the
scalar particle in a constant electric field and show that
in terms of our in- and out-states it has the form dictated
by the general theory. The vector-potential (23)
reduces to

Ay =0,0Exy | A%= - 4,. (29)

With this potential the Klein-Gordon equation (16)
takes on the form

0g> 7> )0
— _+ = - =0
dez * 4 2Ef(X3) 0

2

0
2
Z= \dek|(xy+ 2 -\/;no(xg, E ":—;‘ 31)

The solutions, normalized on unity current, are, see
Eq. (8.2.5) in [14],
Yty 7D ()

- - _ -in/4
V= f,=c,D (e Z),
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W= f = e,D, (€747

W, e,D (07, (32)

i1
2 e es Ger) M en(S), p prpap” (33)

Now in the relations (6) and (8)
e ool . mog
P FHMH Ha H,c'zp:wpoE/\H, (34)
02 0
and in relations (10) and (11)
C'lp - \/E

¢ pHLA
N

Ip ~

exp@- %(A - i)@

D S T
Cp = — —-zepo-E/\H.

ch)

(35)

We note that -§ and - in (9) coincide in this
to  (22) Y on
t 21 (po- p’o)we have to replace ¢, in (32) and
(33) by

case. According to normalize

0 ﬂ 0
Thus we may assume that (~functions in (10) and (11)
are normalized in this way. The same relations hold for
non-stationary states. The important thing is that the

relations (10) and (11) constitute all the necessary
ingredients for S-matrix theory [1,5].

= (2‘€E‘)_1/4 (36)

‘c ZP‘

We note now that the relation (18) takes on the form

Sy t)? —ﬁm 2ty

10
Z'= \/M(?%+ %) , €77

On the other hand, using (30) we find

dZHf de,,H F(p’0 P2 20y Ty (38)

Now it easy to verify that relations (19), (21) and (22)

e .

(37

remain valid as well as the orthogonality of + lﬂ and

_U andalsoof "¢y and "¢ .

Solutions (32), in which the factor depending on x,
X, t is dropped for brevity, are characterized by the
quantum number p° (and also p, and p»). If instead of
vector-potential (29) we wuse in the Klein-Gordon
equation the vector-potential

A, =

U _5H3Ex-:Aﬂ_ I] X —1+X3,

dxH

Nz E(txy- x3/2), (39)
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we obtain the solutions ¥ p~ characterized by the

quantum number p~ see [15,16]. Of course, we can go
back to the potential (29) and obtain

b, Gz =y s () L 40)

Making modifications due to the present assumption
=-le|, we have from the results in [15,16]

"y 'p— (x)= p X'+ ZeE(x ) tv lan

ZF o=, 1 =p -ebx . 41
Eh p - ekx (41

The factor depending on xi, x, is dropped for brevity. So
this is the positive-frequency out-state. To corroborate
this we may add to the arguments in [15,16] the
following physical justification. The classical particle
with the negative charge starts from the region with
large negative x;, is slowed down and is reflected back
to where it comes. Its kinetic momentum TG is negative
and grows in magnitude for # - c. Hence

nT=m’-my)

Going back to the quantum state (41) we note that the
particles (antiparticles) are in the region where 71~ > 0 (

indicates that we are far from the

Lo (42)

t-

n”<0). Large 71~
region where pairs are created (7~ = (). In the region

where 7~ < 0 the wave function (41) must be small for
small probability of pair production. Thus in this region

zzeM(-2), z<0. 43)

Similarly,
1
W ()F X
p (4‘eEDl/4

X exp%— %p'f + ieE(x' )2+ " In(- Z)E (44)
For positive z in (44) we have

-zz=eMz,2>0. (45)

The complete set of ] p~ -solutions must satisfy the

relations (10) and (11). This gives

N ’p :B(H_)Clp+w ’p ,_w’p- = 9(—7T_)C1p-w’p-1 5
0L, x>0
G(x) = HO’ <0 (46)

The proper time representation of the scalar particle
propagator for the vector-potential (39) is 17,1]

ds

- (x" = )EL ssinh(eEs)

(an)? g i

0 2452 0
X exp[- ism” + 22 i(yé - y%)eEcoth[eEs)D ’
4s 4 i

G(x',x|A'):

y=x-x. (47)



Now we multiply (47) by

o0 1 - 00
expl- lHPl)ﬁ t Py oP Y HD

0 2 0
and integrate over y;, y, and y", see (54). For the integral
over y' we have

N I S :
Ldy Uﬂﬂﬁpy 4cEy (x +x) 4ych DDDD(eEs)H

= 2n6§p7 - é(

In the expressions (47) and (48) the charge e can
have any sign. For e=-|e¢| we obtain for the right hand
side of (48)

X+ x") - ,VT 7 DDDD(EES)% (48)

8
- (5(cothr-R)' ———sinh TOJ(T-TO)
‘eEy‘ ‘eEy‘
1'+ -
R=T T (49)
m-n
+ "
T:|€E|S,[O:—]nR 1:lnﬂ_ s
2 R-1 2 1
T =ptleE|x ,n'" = p+]eE|x",
y =X -x. (50)

We note that the reversal of sign of z~ and ©' does not
change R. In order to have the nonzero 6-function
argument, R must lie in the interval 1<R<cobecause s>0
in (47). This is possible only in two cases

O<m<z~, ie x<x~; (51)

0>r>7r", ie x>x". (52)
Taking into account that

m 0i 0 im0

J dy, eXpHgyf T ipngs 2rs eXPI ispi H(53)

-0

and similarly for the integral over y,, we get for the
case (51)

0 © © D
[ ot P

i ');exr@ anED( Pl f E (54)

|-

The relation ¢’ = is used here, see (50). We

e
note also that according to (41) and (44) both
2 ()97 (x)  under condition (51) and
N (¥)-¢ "> [x] under condition (52) can be written as
e L x ) Lt o) Ll (ss)
" H 2 4 2 %

Making the inverse Fourier transform of (54) i.e.
multiplying it by

- - 0. ' ' 1 ' 0
27" 33XPH’(P1)’1+P2)’2’ 3P y" )H

and integrating over pi, p» and p~ we get

(x' x\A')=
dprdpydp” B R@ Y Y ()0 () x
| @) @en e )wp-(x')_w'*p-(x), Y

(56)

Here B-functions take care of the conditions (51) and
(52). Besides we have

f(m W@ H)=0@m™), x">x,

fCm Bt )=6(¢n), (57)

Taking into account (46) we obtain from (56) and (57)
the sought for representation, which for the potential
(29) has the form

X< x

r (x), X

P

dpdpodp” 5 X0
@e, gy (x)w

*

Gl x14)= iI (x), x<x
P )
(58)

One can verify [16] that the functions defined by the
upper and lower lines on the right hand side of (56) (and
(58)) coincide outside the light cones

'y = - vi<o. (59)

According to (40) and (41) we have
1
s
@
Yy (4eE))"*

X exp%— i.p'x+ + ieE(ﬁ- ﬂﬁ v’ lnzH » (60)
g 2 2 4 A
-y p- 18 obtained from (60) by substitution z - -z under
the logarithm sign.

Now we note that the classification of ¥ -
functions was obtained in [15,16] from the obvious
classification of the non-stationary solutions ¥ p, by an

integral transformation

[

v, (4= I dpsM " (p3sp W p, (44,

-0

(61)

(r)’ +4p p3+2p3

M*(p3,p' )= (ZN‘eE‘)’ 12 exp@z

i
i

Inserting "¢ P (X‘A) in the expression on the right hand

(62)

side of (61), we get U o (d4) on the left hand side and
so on. The reversed relations of (61) can be considered

as the definitions of ¢ p; - For the vector potential

4, = - 0,3E | considered in [15,16], we have
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[

[dp™M(ps.p )Y (D)=, () =

-0

- Bpez'p3)c3 DV . (eir( /4T)

dp”M(ps,p )Y - (§A)= 4, (4)=

— =

= B,e™"D . (-e"'*T)

8

0mh_il

i 310
B, = (2eE) 1/4epo o

s a4l

T= \[2eE|(- ‘5—2‘). (63)
By analogy we expect that

b o }dp‘K(pO,p‘ W, (64)

K(p’.p)=

= QnleB) 12 exp@i (p )+ 441;_EP0 +2p; 0 )

where p¢ differs from v,=v p° in (32) only by an
inessential phase factor, see (69). To see that this is true
we use first the relation

P -Appitopy, D1 L L0)
2 EL - oF =
! 4eE arTrengTe 4)5

2 2
-i%ﬂ'zc-i%-ipot

(66)
where
P’ T |
= - + z= e=-le 67
¢ = - leEl(x eE)’ M, , (67)

then formula 3.462(1) in [18], the prescriptions (43) and
(45) and the relations between the parabolic cylinder
functions, see 8.2(6)-(8) in [14]. Then we find
+ _ - 0 -\t _
b= [do K P)Y - =
o (68)

_ oim ik 31 0 o
2eE) V' expr—- “In2- =" - ip%qD . ("7
(2eE|) pHS A g P i ( )

9= [ KPP0 E
’ (69)

_ oim A 3mA 0 i
= (2kE)V* - L n2- 25 -ip%aD (e M4z
(2E) GXP% i g P 1o ( )

and similar expressions for + 9 p* and 9 p0 - Here Z is

the same as in (31).
Comparing these functions with the ones in (32)

together with (36), we see that ¢ p* coincide with Y »°
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up to an inessential phase factor. We could get rid of
this factor by modifying K(p°,p’).
We note here that

IdP'K*(p'O,p' K(p®.p)=0(p"- p%)  (70)
and

Idp°1<*(p°,p" K(p®,p)=8(p - "), (1)

So the relation (64) can be reversed

[ K (P o

-0

(l]_:

P (72)

Using this formula we rewrite the integrals over p~ in
(58) as follows

[do" 0 G, ()= [ 0 (), (0, 1

(73)
[dr-v ()Y, ()= [ dp’ Y ()Y, (0, f<t,

The conditions on ¢ and ¢ are written on account of the
remark after (58). Thus

1
Glx',x|4)=i[dp [ d 0
(x x| ) l:[u le sz p (2”)301p
- 74
1y () ol oo 4
X[ i}
0 e ol e
By the way it is clear from (74) and (40) that
Glx, x| 4)= 0D NG x| 4). (75)

The expression (74) has the form dictated by the general
theory [1,19].

Finally we note that it follows from (61) and (64)
that

©

b= [dpsN (P ps) 6

where

0

N(p®.ps)= [ dp” K(p®.p )M (p3.p" )=

-0

) Uim g
= (Zﬂ‘eE‘) 12 expl- o 77
i 4
The relation (76) can be checked with the help of
formula 2.11.4(7) in [20] which can be adjusted as
follows



[ deexp i, (e ”f v, (2,

-0

| phaséc < 3771 ) (78)

Here v- 1= i (W-1==-0) fork =v (k =V*).Sowe
insert "¢ s (x]4) into the right hand side of (76) and

take into account that
+ _  -ileE|txs + ~
¢ D3 (X‘A) - e l‘e ‘X3 ¢ P3 ()C‘A) )

PP
eE|

t paxy = - éZT— ip't+ i‘eE‘th (79)

Then we get

0

9 ()= j dpsN(p°,p3)" 9 . (x]4) =

'
8

ogi,.0 in /4
=Y (dTexpr —ZTrD . 7)-(80)
241 (2eE])" I Ry A

Now using (78) we obtain the right hand side of (68).
For ¢, (xX4) we proceed similarly, but use the

substitution 7T = -x
employing (78).

instead of 7° = x , when

It is shown in [15,16] that for example ¥ - can be

obtained from 'Y p, Dby changing continuously the
gauge of the electric field potential. The same is true for

'

v,
indistinguishable and only the wave packets are
observable.

It is clear that N(po,p3) and M(p3,p ) have the

+ . .
and ¥ P For this reason these functions are

orthogonality properties of K ( po, p ), see(70)and (71).
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