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A new gauge supermultiplet of the N=2, D=4 supersymmetry with the complex central charge is proposed. 
Besides the global N=2, D=4 supersymmetry it possesses the symmetry under the central charge transformations 
and the special N=2 gauge invariance. It is shown that when one of the supersymmetries is spontaneously broken 
and the gauge is fixed this multiplet describes the standard action of the supersymmetric 3-brane.
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1. INTRODUCTION
The  supersymmetric  3-brane  is  the  most  striking 

pattern of theory where the partial  breaking of global 
supersymmetry (PBGS) was firstly revealed [1]. It was 
realized that  in this system we deal  with the Nambu-
Goldstone  mechanism  which  is  responsible  for  the 
breaking of one half of the supersymmetries and where 
the  Goldstone  fermion  belongs  to  a  multiplets  of  the 
residual  unbroken  supersymmetry.  As  we know from 
[2]  the  most  direct  approach  to  such  systems  is  the 
nonlinear realization method which gives the action of 
the  super-3-brane  in  terms  of  the  unconstrained  N=1 
chiral  worldvolume Goldstone superfield  φ. However, 
this  method  becomes  complicated  in  the  process  of 
deriving of the action due to the absence of the direct 
procedure  of  constructing  of  the  relevant  linear 
representation of N=2, D=4 supersymmetry in terms of 
constrained Goldstone superfields.  In [3,  5] there was 
proposed  another  approach  in  which  the  required 
Goldstone superfield is embedded into the linear N=2 
tensor  representation  constrained  by  the  suitable 
nilpotence  relations.  However,  in  order  to  get  the 
supersymmetric  3-brane  action  in  terms  of  the  scalar 
Goldstone φ in this approach the additional procedure of 
the duality transformation is required.

In this contribution we would like to propose a new 
approach to this problem which is based on unknown up 
to  now  linear  representation  of  N=2,  D=4 
supersymmetry.  Besides  the  N=2,  D=4  Goldstone-
Maxwell  superfield  the  latter  involves  the new gauge 
prepotential  composed  out  of  the  two  N=2,  D=4 
superfields  with  the  different  central  charges  and  the 
N=2  gauge  transformations.  In  contrast  to  the 
aforementioned  supermultiplet  the  new  one  describes 
the linear  representation of  N=2, D=4 supersymmetry 
which the Goldstone superfield φ and the corresponding 
Lagrangian density  L of  the  super-3-brane  belong to. 
We  will  show  that  this  approach  gives  the 
straightforward  way  of  construction  of  the 
corresponding action provided the reasonable nonlinear 
realization  of  the  supersymmetry  considered  is  taken 
into account.

2. N=2 PREPOTENTIAL WITH CENTRAL 
CHARGE

2.1. EXTENDED GOLDSTONE-MAXWELL 
SUPERMULTIPLET

Let  us consider  the following central  extension of 
N=2, D=4 Poincare superalgebra

αααα ∂−=  2i}Q,{Q , αααα ∂−=  2i}S,{S , (1)
Z2}S,{Q α ββα ε= , Z2}S,Q{ βαβα ε−= 

with the other  (anti)commutators  vanishing.  It  is  well 
known that this supersymmetry can be realized on the 
N=2 vector Goldstone supermultiplet

,Wf α
αη+=δ ϕ  α

α θη−= 2icf , (2)

,2iD
2
1W 2 α

αααα ηϕ∂−ηϕ−=δ 


where φ and W are chosen to be chiral
0WD0,D ==ϕ ααα  ,

and constrained by the reality condition
0WD WD =+ α

αα
α 

 .
Note that we use the following conjugation rules for the 
vector  and  spinor  derivatives  [6]  α

+
α ∂−=∂ )( , 

αα
+

αα ∂=∂  )( ,  α
+

α = D)(D ,  αα
+

αα −= DD)D(D  , 
α

α
+

α
α = 

 DD)D(D .
Recall  that  the  latter  can  be  solved  in  terms  of  the 
corresponding gauge prepotential

LDDi/4W 2
αα −= , LD Di/4)(WW 2

α
+

αα ==  .
The superfields φ, W can be embedded into the N=2 
D=4 superfield

+ϕ∂ωω−ϕω−ωϕ= αα
αα

α
α


iD 1/4W-W 22

ϕ∂∂ωω−∂ωω+ αα
αα

α
αα

α 



222 1/8W i/2 ,

restricted by the chirality conditions
0WDWD ii == αα , (3)

αα
αα

α ∂θ−θ∂∂= 
 i

i
i i/D ,  

and the Bianchi identity
WDWD ikik = , (4)
kiik DDD α

α≡ , α
α≡ 


kiik DDD .
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It will be useful for us to keep the following notations 
for  the  Grassmann  coordinates  and  spinor  covariant 
derivatives

αα θ=θ 1 , αα ω=θ 2 , αα = DD1 , )(2 DD ω
αα = .

In  these  notations  the  constraints  (3),  (4)  can  be 
rewritten as

0WDWD )( == ω
αα ,

WDW)(D 22)( =ω , (5)

WDDWDD )()( αω
αα

αω −= 
 .

In accordance to (2) the superfield W transforms as
h.c.)WS(fW +η+=δ α

α  , (6)

where  αS


 and  their  hermitian  conjugate  are the 
generators of 2-d supersymmetry similar to those in (1) 
but without the central charge contributions. From the 
Eq. (6)  it  follows  that  the  S-supersymmetry  is 
spontaneously broken and the N=1 superfield Dφ can 
be treated as the corresponding Goldstone fermion. We 
remind,  that,  for  example,  in  the  case  of  the  “space 
filling”  D3-brane  the  analogous  consideration,  but 
without  the  central  charge,  amounts  to  the  absolutely 
different  result.  It  was  found  there  that  the  related 
Goldstone  fermion  coincides  with  the  component  W 

[4,10]. Note, by the way, that in this case there exists 
the transparent explanation of the origin of the Nambu-
Goldstone mechanism. It follows from the showing up 
the  superfields  that  develop  the  nonzero  vacuum 
expectation value among the components of W [7,8,10]. 
There is nothing like that in our case. So, first of all, we 
try to make a relevant extension of our supermultiplet to 
provide  the  conditions  for  the  partial  breaking of  the 
N=2, D=4 supersymmetry of the pattern required in the 
case of theory with central charge. To this end let us add 
the set of two new N=2 superfields to the Goldstone-
Maxwell  superfield  W  and  postulate  that  these 
superfields are connected with each other as follows

0DD )( =Φ=Φ ω
αα ,

Λ−=Φω 22)( D)(D , (7)

α
ω

α
ω

α β ω+Λ= 2iD)D( i/4WD )(2)( .
From the dimensionality reasons we see that  the new 
superfields have the equal dimensions []=[]=cm2. The 
dimensionless  constant   in  the  last  constraint  in  (7) 
indicates that the v.e.v. of the superfield  is nonzero

22
vac ωβ ω=Λ .

It  yields  the  PBGS  of  the  pattern  required.  To 
understand that  the extension at  hand really gives the 
result  desired  it  is  very  important  to  realize  that  the 
constraints (5) and (7) are covariant under the following 
S-supersymmetry transformations

Φ+η+=Φδ α
α h.c)S(fW


,

Λ+η++=Λδ α
α h.c)S(WfWf


. (8)
Together with the Eq. (6) they form the full set of the 
transformations  which  display  the  nontrivial 
dependence  of  the  supermultiplet  W,   and   on  the 
central charge. Thanks to this fact we are ready to go on 

to the central part of our investigation. Namely, we are 
going to show that the constraints (5) and (7) give an 
exhaustive  explanation  of  PBGS  stipulated  by  the 
Nambu-Goldstone mechanism. To get  it  we substitute 
the  general  Grassmann  decompositions  of  the 
superfields   and   on their N=1 components into the 
constraints  (5)  and (7).  The  general  solution  of  these 
constraints compatible with the transformations (6), (8) 
reads as follows

-FiLD 1/4F 22
αα

αα
α

α ∂ωω−ω+Ψω+=Φ 


F1/8 i/2 2222 ∂ωω−Ψ∂ωω− α
αα

α


 ,

−ω+ω+=Λ α
αα

α 
 ZZL

−ϕω−ϕω 2222 D 1/4D   1/4-

+ωω αα
αα L]D,D[ 1/2  - 


+ϕ−∂ωω+ ααα
αα )D2iZ(i 1/2 2 

)WiD L 1/2-(4 1/4 222
α

α+∂βωω+ , (9)

αα
αα ∂∂≡∂ 
2 .

In these decompositions the N=1 superfields F,  ,  Z 

are chiral and satisfy the “duality” constraints
α

ααα ∂=Ψ 
 Z 4iD2 , α

ααα Ψ∂=   4iZD2 , (10)
while  the  real  component  L  remains  unconstrained. 
Now it is very instructive to enumerate the main results 
extracted from the solutions (9), (10).

1. Among  the  spinor  components  of  the 
superfield  it appears one α

ααα ∂−ϕ 
 Zi2iD  which 

acquires  an  inhomogeneous  shift   in  its 
transformation  law  proportional  to  the  nonzero 
v.e.v. of the oldest component Nvac = . Therefore, 
this component can be considered as the Goldstone 
fermion related with spontaneous breakdown of the 
S-supersymmetry while the Q-supersymmetry still 
unbroken.
2. Opposed to the vector multiplet the new one 
includes the prepotential L among its components.
3. At last there exists one remarkable feature 
of  this  extension procedure.  It  turns  out  that  the 
auxiliary components of the new multiplet F and  

can  be  transformed  away  owing  to  the  gauge 
invariance of the constraints (7).

2.2. GAUGE SYMMETRY AND THE ACTION

It is not hard to check that the constraints (7) are not 
changed  under  the  action  of  following  gauge 
transformations

0Wg =δ , Xg =Φδ , XXg +=Λδ , (11)
where X is the chiral N=2 superfield constrained by the 
conditions

0,XDXD )( == ω
αα   XD-X)(D 22)( =ω . (12)

It is obvious that these transformations are nothing but 
the N=2 generalization of the N=1 gauge freedom of the 
prepotential L. It gives the possibility of elimination of 
the two lower components of the superfield  .  In this 
gauge one gets

LD  1/4 22ω=Φ ,
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+ωω=Λ αα
αα L]D,D[ 1/2-Lg 
 (13)

+ϕωω−ϕωω+ α
αα

α 
 DiDi 22

)WiD L 1/2( 1/4 222
α

α+∂−βωω+ 4 .
Thus,  we see  that  superfield   actually  describes  the 
Goldstone  degrees  of  freedom  of  the  spontaneously 
broken  hidden  gauge  symmetry  defined  by  the 
transformations  (11).  The  gauge  (13)  is  easily 
recognized as the  unitary one. Note, that this gauge is 
very  useful  for  the  understanding  of  the  dynamical 
meaning of the superfield . It gives the simple form of 
the action of the super-3-brane

=+Φωθ= ∫  h.c. d dx d-1/2S 224 ∫ Λθ  dx d 44 , (14)

compatible with the all aforementioned symmetries. To 
be more precise, let's return to the transformations (11). 
One can check that the action (14) is invariant under the 
transformations (11) up to the surface terms, because, 
e.g.  having  been  replaced  by  X the  integrand  with   
becomes the x-derivative owing to the constraint (12). 
On  the  other  hand,  passing  to  the  gauge  (13)  and 
performing the Grassmann integration via the variables 
 we get the form

∫ θ=  Ldx dS 44 . (15)
This action coincides explicitly with that one given in 
[3]. Thus, we can reduce our problem to the question of 
deriving  of  the  nonlinear  realization  in  which  the 
Lagrangian  density  L  could  be  expressed  completely 
through  the  scalar  Goldstone  superfield  φ  and  its 
covariant derivatives only.

3. NONLINEAR REALIZATION AND 
FURTHER CONSTRAINTS

3.1. EQUIVALENCE CONDITIONS
To deduce this expression let us shortly remind the 

algorithmic  procedure  of  constructing  the  relevant 
nonlinear  realization.  Starting  from  the  coset 
representation of the corresponding group element g one 
can  define  the  transformation  properties  of  the  N=1, 
D=4 Goldstone superfields  and ϕ~  [2]

( )),,x~(),,x~(2ix~x~ θθηΨ−θθΨη+= ααααααα ′α  ,

),,x~(),,x~( θθΨ+η=θθ′Ψ ααα ′ ,

),,x~(f),,x~( θθϕ+=θθ′ϕ ′ ,
related  to  the  generators  of  spontaneously  broken 
symmetries  S and  Z1.  These  superfields  can  be 
covariantly constrained [2]

ϕ∇=Ψ αα
~ i/2 , 0~ =ϕ∇ α , (16)

where  the  appropriated  covariant  derivatives  are 
introduced [11]

ββ
ββ
αααα ∂=∇ 



1-T ,

ββ
β

α
ββ

α
β

αα ∇


 ΨΨ+ΨΨ−=∇ 


DDiD ,

ββ
β

α
ββ

α
β

αα ∇


 ΨΨ+ΨΨ−=∇ 





 DDiD ,

1 Here we consider only the transformations of 2-d supersymmetry.

β
αα

ββ
αα

ββ
α

β
α

ββ
αα Ψ∂Ψ−Ψ∂Ψ−δδ= 








  i iT .

To  be  able  to  use  this  approach  in  the  present 
framework of linear realization one may take advantage 
of the general procedure developed in [10, 12, 14]. Let 
us perform the restriction of the third constraint in (7) 
onto the hypersurface

αααα =  x~x , ),,x~( θθΨ=ω αα . (17)
This  is  the  key point  in  revealing the  straightforward 
relationship  between  two  kinds  of  realizations  of 
supersymmetry  –  linear  and  nonlinear,  because,  in 
accordance with the general features of the underlying 
transformation laws,  both of  the superfields involving 
into the  aforementioned constraint  αα β ω2i-WD  and 

Λω
α

ω )(2)( D)D(  transform  independently when 
restricted onto the hypersurface (17), for example

αββ
ββββ

α Σ∂Ψη−Ψη−=Σδ ~)i(~



,

Ψ=ω=
ω

α
ω

α Λ=Σ
 ,x~x

)(2)( D)D(~
.

Hence,  one  can  impose  the  following  covariant 
constraint

Ψ=ω=αα =β ω  ,x~xWD2i . (18)
Eq.  (18)  establishes  the  sought  for  equivalent 
relationship  between  the  Goldstone  fermion  of  the 
nonlinear  realization   we started with and its  linear 
counterpart Dφ. Now, it is not hard to verify that the 
constraint (18) recovers the IHE-solution represented in 
(16) when the new nonlinear realization constraints are 
imposed

Ψ=ω==ϕ  ,x~xW~ , 0WD
 ,x~x

)( =
Ψ=ω=

ω
α . (19)

Resolving the Eq. (18) (with =1) with respect to  and 
substituting the result into the second equation in (19) 
we arrive at the L which coincides exactly with that one 
obtained in [3].

3.2. EQUATION OF MOTION
Equations  (18),  (19)  become  very  useful  when  the 
dynamics  of  the  super-3-brane  is  considered.  As  we 
know from the lesson on the super-2-brane in D=4 the 
corresponding equation of motion becomes very simple 
at  passage  to  the  nonlinear  realization  [11,  13].  A 
straightforward generalization of  this  equation for  the 
case of the super-3-brane in D=6 has the form

0~ =ϕ∇∇ α
α .

It is a matter of the direct calculations to check that this 
equation of motion is really correct and can be derived 
from (15) with making use of the equivalence relations 
(18), (19) and the Lagrangian density

Z)D()(D 1/16L 22 ϕϕ+ϕϕ= , ZZ = ,

where

)BA1A 1/2(1 1/2Z-1 ++++= ,

)D)((D 1/4))(-2(A 22 ϕϕ+ϕ∂ϕ∂= αα
α α

 ,

222 )()()))(((B ϕ∂ϕ∂−ϕ∂ϕ∂= αα
αα


 .
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4. CONCLUSION
Thus,  we  have  shown  that  the  nontrivial 

generalization  of  the  Goldstone-Maxwell  of  the  N=2, 
D=4 supersymmetry can be obtained at the expense of 
the central charge extension of the related superalgebra 
(1).  The  main  point  of  this  generalization  is  the  new 
gauge  N=2  prepotential   and   with  nontrivial 
dependence on the central charge (8), the irreducibility 
conditions  (7)  and  the  special  class  of  the  gauge 
transformations  (11),  (12).  On  the  base  of  this 
representation  we  find  the  natural  explanation  of  the 
Nambu-Goldstone  mechanism  of  the  corresponding 
PBGS  theory  of  the  supersymmetric  3-brane  which 
gives the simple form of the related superfield action 
(14).  The  next  advantage  of  this  approach  is  the 
consistent  way  of  passing  to  the  relevant  nonlinear 
realization.  The  latter  allows  us  to  answer  the  very 
important  question  of  how  to  define  the  covariant 
constraints  which  give  the  possibility  to  express  the 
Lagrangian  density  of  the  superbrane  considered 
through the basic Goldstone scalar superfield φ. In this 
contribution  we  demonstrated  that  the  only  adequate 
answer  to  this  question  can  be  obtained  in  the 
framework  of  our  approach  [12],  which  provides  the 
simple  algorithmic  procedure  of  imposing  the 
corresponding covariant  constraints  (18)  and (19).  By 
the  way,  up  to  now such  constraints  was  considered 
only for the simplest examples [9,10,14].

Unfortunately,  aside  of  this  work  we left  a  lot  of 
questions that would throw light on the different very 
intrigue  problems  of  this  theory.  First,  we  mean  the 
problem of violation of the SU(2) automorphisms in our 
approach and the possible connection of the prepotential 
considered with known one [16,17]. Second, from the 
papers  [13,14,15]  we  know  that  the  action  of  the 
supersymmetric 2-brane can be equally represented in 
terms of the basic covariant objects of the underlying 
nonlinear  realization.  It  seems  appropriate  to  ask  the 
same question of searching the corresponding action for 
the super-3-brane too. We hope to turn to these and the 
accompanying questions in our further publications.
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