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Leading-log model-independent QED corrections in DIS of unpolarized electron off tensor-polarized deuteron 
are considered. Same approach was used for investigation of semi-inclusive DIS of electron by nucleus with detec-
tion of hadron and scattered electron. Calculations are based on covariant parametrization of polarization and use of 
Drell-Yan like representation to describe radiation by initial and scattered electron. Applications to polarization 
transfer from polarized electron to detected hadron and to scattering by polarized target are considered. DIS of unpo-
larized electron on tensor-polarized deuteron with tagged collinear photon radiated from initial-state electron are in-
vestigated.
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1. INTRODUCTION
The purpose of this paper is developing a unified ap-

proach to computation of the radiative corrections (RC) 
for inelastic scattering of polarized electron beam in the 
inclusive and semi-inclusive (SI) setups. We investigat-
ed  the  deep-inelastic  scattering  (DIS)  of  unpolarized 
electron beam off the tensor-polarized deuteron target (a 
process with tagged collinear photon, radiated from the 
initial-state  electron,  has  also  been  investigated).  The 
ELFE project provides a good opportunity for the mea-
surement of some hadron tensor structure functions [1], 
which could give clues to physics of non-nucleonic com-
ponents in spin-one nuclei and study the tensor structure 
on the quark-gluon level. The use of the tensor-polarized 
deuteron target at HERMES allows investigating the nu-
clear binding effects and nuclear gluon components [2]. 
As stated above, we considered also inelastic scattering 
of polarized electrons in the coincidence setup, namely, 
when one produced hadron is  detected in coincidence 
with the scattered electron. A broad range of measure-
ments  falls  into  the  category  of  coincidence  electron 
scattering experiments. It includes deep-inelastic SI lep-
toproduction of hadrons, (e, e' h), as well as quasielastic 
nucleon or deuteron knock-out processes, (e, e' N) or (e, 
e' d).  The former class of experiments gives access to 
the flavour structure  of  quark-parton distributions  and 
fragmentation functions.  It  is in focus of experimental 
programs at CERN, DESY, SLAC and JLab. Some ex-
periments have already been completed  and some are 
being  in  preparation.  Quasielastic  nucleon  knock-out 
processes allow to study single-nucleon properties in nu-
clear medium and probe the nuclear wave function.

We calculated the QED RC to the above mentioned 
processes  by means of  the  electron  structure  function 
method [3] which allows to treat the observed cross sec-
tion including both the lowest order and higher order ef-
fects by the same way. As a result we can obtain clear 

and physically transparent formulae for RC. In this re-
port we restrict our consideration to leading accuracy. It 
allows us to avoid an attraction of  any model for  the 
hadron  structure  functions  and,  as  a  result,  to  obtain 
some general formulae for quite wide class of the physi-
cal processes. 

2.  THE TENSOR-POLARIZED TARGET
In present section we give the covariant description 

of the cross section of DIS of unpolarized electron beam 
off the tensor-polarized deuteron target
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We use approach  which is  based on the covariant 
parametrization of the deuteron quadrupole polarization 
tensor in terms of the 4-momenta of the particles in pro-
cess (1) [4] and use of the Drell-Yan like representation 
[5] in electrodynamics, which allows to sum the leading-
log model-independent RC in all orders.

To begin with, we define the DIS cross section of the 
process (1), with accounting RC, in terms of the leptonic 

µ νL and hadronic Hµν tensors contraction
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where q is the 4-momentum of the intermediate heavy 
photon that probes the deuteron structure. Note that only 
in  the  Born  approximation  (without  accounting  RC) 
q=k1-k2. 

The model-independent RC exhibits  themselves by 
means of the corrections to the leptonic tensor. In the 
framework of  the leading accuracy this  tensor  can be 
written as a convolution of two electron structure func-
tions D and the Born form of the leptonic tensor  BLµ ν

that depends on the scaled electron momenta
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where m is the electron mass.
The limits of integration on the right side of Eq. (3) 

can be derived from the condition that the DIS process 
(1)  takes  place.  It  is  possible  if  the  final  undetected 
hadron system consists, at least, of a deuteron and a pi-
on. In this case we have
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where M (mπ) is the deuteron (pion) mass. This inequali-
ty defines the integration limits as follows
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The Born leptonic tensor is (for the case of the longi-
tudinally-polarized electron beam)
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where quantity λ is the degree of longitudinal polariza-
tion of the electron beam.

The hadron tensor has polarization-independent and 
polarization-dependent parts. We consider only the case 
of the tensor polarization

)/()~~())(

/(~~)/(~

1
2

~1~13
2

1

2
11121

)(

qpMQpQpqBqp

MppqpaBgaBH T

++

++=

αµνανµα

νµµ νµ ν

−=−= µµνµµ νµ νµ ν 11
2

4
~,/~,~ ppqqqggQB

 
 

where  Qµν is the deuteron quadrupole polarization ten-
sor.  In  general  all  the  hadron  structure  functions  Bj 

(j=1,2,3,4) depend on two independent variables: q2 and 
x′=q2/(2p1q)  (within  the  chosen  accuracy 

)1/(' 211 xxyxyxxx +−==  ). We used the notation of 
Ref. [4].

Because  the  polarization-independent  part  of  the 
hadronic tensor depends on the scaled electron momenta 
only (by means of 21 kkq


−= ), we can write the respec-

tive contribution to the cross section in the form of the 
Drell-Yan  representation  in  the  electrodynamics  that 
takes into account the leading part of the radiative cor-
rections
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means unpolarized Born cross section.

As concerns the polarization-dependent contribution 
to the cross section dσ(T) the situation is somewhat differ-
ent. In general we cannot use for it the representation (7) 
with simple substitution

dydQddydQd Tu 2)(2)( // σσ →       (8)

in both sides of Eq. (7). The reason is that the axes, re-
spect  to  which  the  components  of  the  deuteron 
quadrupole polarization tensor are defined, can change 
their directions at the scale transformation of the elec-
tron  momenta:  2,12,1 kk


→ .  But  substitution  (8)  can  be 

useful and applicable if all axes remain stabilized under 
this transformation.

Therefore, first we have to find the set of stabilized 
axes and write them in covariant form in terms of 4-mo-
menta of the particles participating in the reaction. If we 
choose  the  longitudinal  direction  l along  the  electron 
beam and the transverse one  t in the plane (k1,  k2) and 
perpendicular to l, then
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One can verify that the set ),,( ntlS µ  remains stabilized 
under the scale transformation and
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If to add one more 4-vector  MpS /1
)0(

µµ = to the 
set (9), we receive the complete set of orthogonal 4-vec-
tors with the following properties
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This allows expressing the deuteron quadrupole polar-
ization tensor in general case as follows
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because  the  components  0000 ,, αα RRR  identically 
equal to zero due to the condition .01 =νµ ν pQ

So, if  the components of the deuteron polarization 
tensor are defined in the coordinate system with the axes 
along the directions  l,  t and  n, the polarization-depen-
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dent contribution to the cross section of the process (1) 
with accounting leading RC can be written in the same 
way as polarization-independent one
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Symbol Ts indicates that components of the quadrupole 
polarization  are  defined  with respect  to  stabilized  set 
(9). The simple calculation gives
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3.  SEMI-INCLUSIVE DIS WITH POLAR-
IZED FINAL PARTICLE

Here we clarify the question how to calculate QED 
RC to the cross section and polarization observables in 
the following process (within the considered approach)
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We use the following definition of the cross section 
of the process (13) with definite spin orientation of the 
proton in terms of the leptonic and hadronic tensors
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where  132 ])2()12[( −+= πα VSN Ak ,  AS  is  the  target 
spin, )( 22 Eε  is the energy of the scattered electron (de-
tected proton) and q is the 4-momentum of the virtual 
photon that probes the hadron block. Hadronic tensor is 
defined by the standard way.

The hadronic tensor in general case can be written as
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where Sµ is the 4-vector of the proton spin that satisfies 
conditions: 0)(,1 2

2 =−= SpS , and ih  (i=1-18) are the 
hadron SI structure functions which depend in general 
on  four  invariants.  These  invariants  can  be  taken  as 
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2 ppqpqpq

To completely describe this process we will use the 
following set of invariant variables 
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The set of stabilized 4-vectors can be chosen as 
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where M (m) is the mass of the target nucleus (detected 
proton).

Now we can write down the spin-independent (we 
bear  in mind that  it  means independent on the proton 
spin only) and spin-dependent parts of the cross section 
of the process (13) as
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where  Bdσ ,  with any low index,  denotes  the  corre-
sponding Born cross section given at shifted values of 
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→ .  The  corresponding  shifted  dimensionless 
variables, introduced earlier, read
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The spin-independent  part  of  the cross  section for 
longitudinally-polarized  electron  beam is  expressed  in 
terms of the hadron structure functions as 
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If  the  proton  spin is  directed along  )(lS µ  then the 

spin-dependent part of the Born cross section reads
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In  the  case of  transverse  orientation of  the proton 

spin (along )(tSµ ) we have
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At last, for the normal orientation of the proton spin 

(along )(nS µ ) the spin-dependent part of the cross section 
of the process (13) reads
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4. SEMI-INCLUSIVE DIS 
ON POLARIZED TARGET

In this section we consider the polarization phenom-
ena in SI DIS off polarized nucleus
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where H is arbitrary hadron and nucleus A has definite 
vector polarization P. In this case the leptonic tensor is 
as before, and the hadronic tensor has the same structure 
as defined by Eq. (15), where one needs to use polariza-
tion of the nucleus P instead of the proton spin S and 
write )( 2Pp  instead of )( 1Sp . Besides, we will use the 

notation  181 gg −  for the corresponding hadron struc-
ture functions.

As a stabilized set we can use the 4-vectors given in 
Eq. (9),  where  it  is  necessary  to  do  the  substitution 

1ττ → . The simple calculation gives
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Note that numerical coefficient in front of G1 is twice 
as much as compared with that on the right side of Eq. 
(18) in front of H1. The reason is that in this case we do 
not fix the spin state of the final hadron H.

The polarization-dependent part of the cross section 
for the longitudinal polarization is
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where the functions Gi (i=1-4) can be derived from Hi by 
replacement the hadron structure functions gj instead of 
hj.

The corresponding part  of  the cross  section in the 
case of the transverse polarization can be written as
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For the normal polarization the spin-dependent part 

of the cross section is
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5.  DIS FROM TENSOR POLARIZED TAR-
GET WITH TAGGED PHOTON

The initial-state collinear radiation is very important 
in certain regions of DIS at HERA kinematics domain. It 
leads to reduction of the projectile electron energy and 
therefore to a shift of the effective Bjorken variables in 
the hard scattering process as compared to those deter-
mined  from  the  actual  measurement  of  the  scattered 
electron alone. That is why the radiative events in the 
DIS process 

)()()()()( 211 xpXkkepdke ++→+ −− γ   (21)
have to be carefully taken into account.

In this section we investigate events for the process 
(21)  with  unpolarized  electron  and  tensor-polarized 
deuteron.  We suggest  that  the  hard  photon is  emitted 
very  close  to  the  direction  of  the  incoming  electron 
beam  )1,( 00 < <≤ θθθ γ ,  where  γθ  is  the  angle  be-
tween 3-momenta of the initial electron and hard photon. 
Besides, the photon detector (PD) measures the energy 
of all photons inside the narrow cone with the opening 
angle 02θ  around the electron beam (the scattered-elec-
tron 3-momentum is also measured).

A set of the kinematics variables, that is especially 
adapted to the case of the collinear-photon radiation, is 
given by the shifted Bjorken variables
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and the energy fraction of the electron after the initial-
state  radiation  of  a  collinear  photon 

1111 /)(/)(2 εϖε −=−= Vkkpz ,  where  1ε  is  the 
initial electron energy and ϖ is the energy deposited in 
PD.

The  relation  between  the  shifted  and  standard 
Bjorken variables reads
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quantities  ltttll SSS ,, ,  given by the Eq.  (12),  using the 
following substitution ττ  ,,,,,, byxbyx → . Note that 
components  of  the  quadrupole  polarization  tensor  are 
defined with respect to the set of 4-vectors described by 
Eq. (9). We restrict ourselves to the model-independent 
RC related to the radiation of the real and virtual pho-
tons by leptons. Our approach to the calculation of RC is 
based on the account of all essential Feynman diagrams 
that describe the observed cross section in framework of 
the used approximation. To get rid of cumbersome ex-
pressions we retain in RC the terms that accompanied at 
least  by  one  power  of  large  logarithms: 
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The total RC to the Born cross section (21) is given 
by the sum of the virtual and soft photon corrections and 
the hard-photon emission contribution. The last one is 
different for the exclusive and calorimeter event selec-
tion. In the considered approximation it is convenient to 
write this RC in the form
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The first term is independent on the experimental se-
lection rules for the scattered electron and reads
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YQy tt ,, 2 and the definition of the function )(2 xLi  can 

be found in Ref. [6]. The expression for the Z term is rather 
cumbersome and it will be published elsewhere.

The  second  term,  denoted  by  fΣ ,  explicitly  de-
pends on the rule for the event selection. It includes the 
main  effect  of  the  scattered-electron  radiation.  In  the 
case of exclusive event selection, when only the scat-
tered  bare  electron  is  measured,  and  any  photon, 
collinear with respect to its momentum direction, is ig-
nored, this contribution is 
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Ref. [6]. Note that the mass singularity that is connected 
with  the  scattered-electron  radiation,  exhibits  itself 
through QL term.

The  situation  is  quite  different  for  the  calorimeter 
event selection, when the detector cannot distinguish be-
tween the events with a bare electron and events where 
the scattered electron is accompanied by a hard photon 
emitted  within a  narrow cone  with the  opening angle 

'
02θ around the scattered-electron momentum direction. 

For such experimental setup we derive
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