QED CORRECTIONS TO POLARIZED DEEP-INELASTIC AND
SEMI-INCLUSIVE DEEP-INELASTIC SCATTERING
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Leading-log model-independent QED corrections in DIS of unpolarized electron off tensor-polarized deuteron
are considered. Same approach was used for investigation of semi-inclusive DIS of electron by nucleus with detec-
tion of hadron and scattered electron. Calculations are based on covariant parametrization of polarization and use of
Drell-Yan like representation to describe radiation by initial and scattered electron. Applications to polarization
transfer from polarized electron to detected hadron and to scattering by polarized target are considered. DIS of unpo-
larized electron on tensor-polarized deuteron with tagged collinear photon radiated from initial-state electron are in-

vestigated.
PACS: 12.20.-m, 13.40.-f, 13.60.-Hb, 13.88.+¢

1. INTRODUCTION

The purpose of this paper is developing a unified ap-
proach to computation of the radiative corrections (RC)
for inelastic scattering of polarized electron beam in the
inclusive and semi-inclusive (SI) setups. We investigat-
ed the deep-inelastic scattering (DIS) of unpolarized
electron beam off the tensor-polarized deuteron target (a
process with tagged collinear photon, radiated from the
initial-state electron, has also been investigated). The
ELFE project provides a good opportunity for the mea-
surement of some hadron tensor structure functions [1],
which could give clues to physics of non-nucleonic com-
ponents in spin-one nuclei and study the tensor structure
on the quark-gluon level. The use of the tensor-polarized
deuteron target at HERMES allows investigating the nu-
clear binding effects and nuclear gluon components [2].
As stated above, we considered also inelastic scattering
of polarized electrons in the coincidence setup, namely,
when one produced hadron is detected in coincidence
with the scattered electron. A broad range of measure-
ments falls into the category of coincidence electron
scattering experiments. It includes deep-inelastic SI lep-
toproduction of hadrons, (e, €' h), as well as quasielastic
nucleon or deuteron knock-out processes, (e, €' N) or (e,
¢' d). The former class of experiments gives access to
the flavour structure of quark-parton distributions and
fragmentation functions. It is in focus of experimental
programs at CERN, DESY, SLAC and JLab. Some ex-
periments have already been completed and some are
being in preparation. Quasielastic nucleon knock-out
processes allow to study single-nucleon properties in nu-
clear medium and probe the nuclear wave function.

We calculated the QED RC to the above mentioned
processes by means of the electron structure function
method [3] which allows to treat the observed cross sec-
tion including both the lowest order and higher order ef-
fects by the same way. As a result we can obtain clear

and physically transparent formulae for RC. In this re-
port we restrict our consideration to leading accuracy. It
allows us to avoid an attraction of any model for the
hadron structure functions and, as a result, to obtain
some general formulae for quite wide class of the physi-
cal processes.

2. THE TENSOR-POLARIZED TARGET

In present section we give the covariant description
of the cross section of DIS of unpolarized electron beam
off the tensor-polarized deuteron target

e (k) di(p)- e k)t X(p,). (D

We use approach which is based on the covariant
parametrization of the deuteron quadrupole polarization
tensor in terms of the 4-momenta of the particles in pro-
cess (1) [4] and use of the Drell-Yan like representation
[5] in electrodynamics, which allows to sum the leading-
log model-independent RC in all orders.

To begin with, we define the DIS cross section of the
process (1), with accounting RC, in terms of the leptonic

L,, and hadronic H,, tensors contraction

ki -k
T Pk 2),
kyp,

di_na?

s @

where q is the 4-momentum of the intermediate heavy
photon that probes the deuteron structure. Note that only
in the Born approximation (without accounting RC)
q:krkz.

The model-independent RC exhibits themselves by
means of the corrections to the leptonic tensor. In the
framework of the leading accuracy this tensor can be
written as a convolution of two electron structure func-

tions D and the Born form of the leptonic tensor Lfv

that depends on the scaled electron momenta
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dx dx
Ly, (ksky) = II —2D(x,,L)D(x,,L)
XX,
2
Lfv (ki k,), L= ln%, ko= xk,, ky = kiz,
khyzq, 07 -k - k), 3)

where m is the electron mass.

The limits of integration on the right side of Eq. (3)
can be derived from the condition that the DIS process
(1) takes place. It is possible if the final undetected
hadron system consists, at least, of a deuteron and a pi-
on. In this case we have

XXt y-1-xxy2x,0,x=Q°/2p,(k - k),
§=(M+m)-M*V, V=2kp, (4

where M (my) is the deuteron (pion) mass. This inequali-
ty defines the integration limits as follows

12 x,2(1- yt0)/(1- xp), )
12 x,2 (- y+xyx,)/(x,-0).

The Born leptonic tensor is (for the case of the longi-
tudinally-polarized electron beam)

Lfv (kl’kz): -Zklkzguv + 2(klu k2v * klv kzy)+

* ZiAguva klkaJ s (6)
where quantity A is the degree of longitudinal polariza-
tion of the electron beam.

The hadron tensor has polarization-independent and
polarization-dependent parts. We consider only the case
of the tensor polarization

H;SVT) = aBlgpv t (aB, /pl‘I)ﬁlu Pyt (Mz/

(plq)z)BBan (ﬁlp v + Zjva;Ta )+ (Mz/plq)

B4qu ’ guv = gpv - qlqu /q2 ’ﬁlu = p]y -

where Q,, is the deuteron quadrupole polarization ten-
sor. In general all the hadron structure functions B,
(7=1,2,3,4) depend on two independent variables: ¢* and
xX'=q¢*(2p:q) (within the chosen accuracy
x'=x= xyx, /(y- 1+ x,x,)). We used the notation of
Ref. [4].

Because the polarization-independent part of the
hadronic tensor depends on the scaled electron momenta
only (by means of g =k, - k,), we can write the respec-
tive contribution to the cross section in the form of the
Drell-Yan representation in the electrodynamics that
takes into account the leading part of the radiative cor-
rections
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do “ (k,,k dx,d
(21 2) - JJ x12x2 D(x,,L)
dQ*dy X
do , (k. k,)
dQ*dy
where 0% = x,0° /x,,¥= (y- 1+ x;x,)/x;x, and u
means unpolarized Born cross section.
As concerns the polarization-dependent contribution
to the cross section do‘” the situation is somewhat differ-

ent. In general we cannot use for it the representation (7)
with simple substitution

do ™ /dQ*dy ~ do " /dO*dy (8)

D(x,,L) > @)

in both sides of Eq. (7). The reason is that the axes, re-
spect to which the components of the deuteron
quadrupole polarization tensor are defined, can change
their directions at the scale transformation of the elec-
tron momenta: k,, - k;,. But substitution (8) can be
useful and applicable if all axes remain stabilized under
this transformation.

Therefore, first we have to find the set of stabilized
axes and write them in covariant form in terms of 4-mo-
menta of the particles participating in the reaction. If we
choose the longitudinal direction 1 along the electron
beam and the transverse one t in the plane (ki, k2) and
perpendicular to 1, then

SV= 2k, - p,)IM,

S;SI) = [kZp - (b_ xyT )kly - xyplp ]/d9
Su(") = 2(Vd)"£wpg pykyky sd=Vxyb,
b=1-y-xy1,1=M*/V. )

One can verify that the set S 51”’") remains stabilized

under the scale transformation and

S;”)Sjﬁ) - _5aﬂ ,Sumpw =0,0,p = Lt,n

If to add one more 4-vector S ,50) = Py /M to the

set (9), we receive the complete set of orthogonal 4-vec-
tors with the following properties

S;"’)SV(’”) =g, S;m)SE") =g, .mn=0,.tn.

This allows expressing the deuteron quadrupole polar-
ization tensor in general case as follows

= Q(m) q(n) = ) g)
qu - Sum Svn Rmn = Sp Sv Raﬂ,

Raﬁ = Rﬂa ’Raa = 0 (10)

because the components R, , Ry, , R, identically

equal to zero due to the condition O,, py, = 0.

So, if the components of the deuteron polarization
tensor are defined in the coordinate system with the axes
along the directions 1, t and n, the polarization-depen-



dent contribution to the cross section of the process (1)
with accounting leading RC can be written in the same
way as polarization-independent one

(Ts)
W) - % b, DG, )
dQ dy X
do B(TS)(kh.kz)
dQ*dy
Symbol Ts indicates that components of the quadrupole

polarization are defined with respect to stabilized set
(9). The simple calculation gives

(1

do " (k,k,) _ 2na’
dQ’dy yQ*

* Sltth] Sll

[SllRll * Stt(Rtt - Rnn) *

[2xbT - y(1+ 2x1)*]G + 2b(1+

+3x1)B,+ (b- xyT)B, , S, = 24/xb1y ' [2y
(1+2x1)G+ (2- y- 4b)B, + yB,], (12)

S, = -2xb1(G+ B,),G= xyB, - (b/ y)B, .

3. SEMI-INCLUSIVE DIS WITH POLAR-
IZED FINAL PARTICLE

Here we clarify the question how to calculate QED
RC to the cross section and polarization observables in
the following process (within the considered approach)

e (k)t+ A(p) - e (k,)* p(p,)t X.  (13)

We use the following definition of the cross section
of the process (13) with definite spin orientation of the
proton in terms of the leptonic and hadronic tensors

LuVHﬂV d3k2 d3p2

ds = N
¢ 2¢* ¢, E,

; (14)

where N, = a ?[(2S,+ V(@2n)’T",
spin, £,(E,) is the energy of the scattered electron (de-
tected proton) and q is the 4-momentum of the virtual
photon that probes the hadron block. Hadronic tensor is
defined by the standard way.

The hadronic tensor in general case can be written as

H,, = H + HP (15)
HyY = gy, + Py Py + hsbyy Py
t (PP, t k(PP Y = (Sp)lh
(PN)y, + il [PINT,, + hg(DLN),, + ik
[P,N],, 1+ (SO (PN),, + iy [P\N],, +
t hy(PyN),, * ihs[P, N, 1+ (SN)[,E,, +
t Py Py * higDay Doy * Bia (i),
tilg[PiDalyy 1 Ny = €40p0 Py P2p s >
(ab),, = a,b, t+ a,b,,[ab],, = a,b, - ab,,

v U

S, is the target

where S, is the 4-vector of the proton spin that satisfies
-1,(8p,)= 0, and h; (i=1-18) are the
hadron SI structure functions which depend in general
on four invariants. These invariants can be taken as

a’,(ap)) - (apy) . (pi1y)-
To completely describe this process we will use the
following set of invariant variables

y=2p(k - k) /V,x=-q*12pg,q= k - k,,
2 p, IV 2y = 2k,p, IV

conditions: S? =

z=2p,p, 1V ,z =
The set of stabilized 4-vectors can be chosen as

S0 = M3y

(ZPZ# 2z 2Py )/ md, 1, =

t,=m*/V, 8" = [diky, + (227, - 2)p,, *

+ (2, - zz)p, Vdd, VS = 2k,

uvpo

Py [V AP A (16)

d;=zz,-1,-z71,,(8/8")= -
where M (m) is the mass of the target nucleus (detected
proton).

Now we can write down the spin-independent (we
bear in mind that it means independent on the proton
spin only) and spin-dependent parts of the cross section
of the process (13) as

do . iin dx.dx
By = [ [ 52D, L)D(x,, L)
d’k,d p, X,
do !
(u),l,t,n
Cly 5 (17)
a’}k2af3p2
where Jg 2, with any low index, denotes the corre-

sponding Born cross section given at shifted values of
kl,z - k1,2~

variables, introduced earlier, read

- XYX, - -1+ xx,)
b b
(y- 1t xx,) X1 X

V=xV,z=
The spin-independent part of the cross section for

longitudinally-polarized electron beam is expressed in
terms of the hadron structure functions as

The corresponding shifted dimensionless

2/X,,2, 7 2,2, 7 Z, 1 XX, .

do b 2
6B, — 10— = Nkl: H,, (18)
d’k,d’p, 2q
Hy= =2xyV '+ (1= y = xy1 )by + (2,2, -
=Xyl y)hst (2,4 2 (1= y) = xyz)h, - ANk,

= - (wd,)’ + 2x0[2(2, 4 2,(1- p)-
- 2zz,0, - 2(1- p),]- (2 - 2,(1- iD)
If the proton spin is directed along S ,5[) then the

spin-dependent part of the Born cross section reads
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2t dﬁfac; -
20" P>
- zy) - 2y1,]H,],
Hy= (2= y)het (2t z)hg + (A /0)(0 1By +
tNohe), Hy= Hy(h » hig),ny = Yz, - z(1-
=) xz(2- y)t 2x(zt )0 05 (27 2)(z, -
- (1= )t xyz(z t zy) - 2xp(2- p)T,.

In the case of transverse orientation of the proton

L[H,+ d;*[2(z -
qu

spin (along S,") we have

di? N d?
E 3 . 4 ¢’ 3 -—LH ]a
> d kzd )2 8q7d, d,
U = [xyd} + (z- 220,z - 2,) + (zz, -
S 2,)ylid,  Hy = Hi(h - k).

At last, for the normal orientation of the proton spin
(along S E") ) the spin-dependent part of the cross section

of the process (13) reads
B 3 2
B NV gy 0
d’kyd p, 84 d,

4. SEMI-INCLUSIVE DIS
ON POLARIZED TARGET

In this section we consider the polarization phenom-
ena in SI DIS off polarized nucleus

e (k)+t A(p) -~ e (k,)t H(p,)t X, (19)
where H is arbitrary hadron and nucleus A has definite
vector polarization P. In this case the leptonic tensor is
as before, and the hadronic tensor has the same structure
as defined by Eq. (15), where one needs to use polariza-
tion of the nucleus P instead of the proton spin S and
write (Pp,) instead of (Sp,). Besides, we will use the

notation g, -~ &, for the corresponding hadron struc-

ture functions.

As a stabilized set we can use the 4-vectors given in
Eq. (9), where it is necessary to do the substitution
I - T,.The simple calculation gives

o _ NV’
d3k2d3p2 q4

Note that numerical coefficient in front of G, is twice
as much as compared with that on the right side of Eq.
(18) in front of H,. The reason is that in this case we do
not fix the spin state of the final hadron H.

The polarization-dependent part of the cross section
for the longitudinal polarization is

. df _ NTVH
7 Plyd’p, 4Mq*
- y(1+4 2le)G3 t21,G,],

(21,2, - 2)G, -
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where the functions G; (i=1-4) can be derived from H; by
replacement the hadron structure functions gj instead of
h;.

The corresponding part of the cross section in the
case of the transverse polarization can be written as

do B NV Vayby 1
E L - - xyb)) (z, -
2Ly d3k2d3p2 4q4 [(xvb) (2,
- xyz- z,(b, - xy1,))G, + 2G, + (xb,) ' (1+

+ 2x1,)G,],b, = 1-
For the normal polarization the spin-dependent part
of the cross section is

do® NNV
&hd’p,  4q* b,
t2x1)- z/(1- y- 2x1,)- x2(2- y))G, ]

Y- Xl

£,E, [ * G, - y(z,(1+

5. DIS FROM TENSOR POLARIZED TAR-
GET WITH TAGGED PHOTON

The initial-state collinear radiation is very important
in certain regions of DIS at HERA kinematics domain. It
leads to reduction of the projectile electron energy and
therefore to a shift of the effective Bjorken variables in
the hard scattering process as compared to those deter-
mined from the actual measurement of the scattered
electron alone. That is why the radiative events in the
DIS process

e (k)+d(p)- e (k)+yk)+ X(p,)
have to be carefully taken into account.

In this section we investigate events for the process
(21) with unpolarized electron and tensor-polarized
deuteron. We suggest that the hard photon is emitted
very close to the direction of the incoming electron
beam (6, <0,.8,<<1) where 0,
tween 3-momenta of the initial electron and hard photon.
Besides, the photon detector (PD) measures the energy
of all photons inside the narrow cone with the opening
angle 20, around the electron beam (the scattered-elec-
tron 3-momentum is also measured).

A set of the kinematics variables, that is especially
adapted to the case of the collinear-photon radiation, is
given by the shifted Bjorken variables

Q2 = _(k] - kz - k)z"x = Q2/2p|(k1 - kz - k),
V= 2p1(k1 - kz - k)/zpl(kl - k),

€2y

is the angle be-

V=2p(k -k),

and the energy fraction of the electron after the initial-
state radiation of a collinear photon
z=2p/(k, - k)/V=(¢,-w)/e,, where £, is the
initial electron energy and W is the energy deposited in
PD.

The relation between the shifted and standard
Bjorken variables reads



+ -
'QZ:ZQZ’.x: xyZ ’.y:Z y I,V:ZV.
z+ y-1 z
The simple calculation gives
do
= —P z,Ly)L (x 22
dedyds 21 (2,L,)2 (x,9,0%), (22)

L(x;y,0%)= 210 VO *'[S,R, + 'S, (R, -
R,)*+SR,1, Ly=In 07 /m?),
P(z,Ly)= [(1+ 2°)L, - 2210 - 2),
where the quantities 'S;,'S,,S, can be obtained from the
quantities S;,S,,S,, given by the Eq. (12), using the

following substitution x, y,b,T - "x,y,b,T . Note that

components of the quadrupole polarization tensor are
defined with respect to the set of 4-vectors described by
Eq. (9). We restrict ourselves to the model-independent
RC related to the radiation of the real and virtual pho-
tons by leptons. Our approach to the calculation of RC is
based on the account of all essential Feynman diagrams
that describe the observed cross section in framework of
the used approximation. To get rid of cumbersome ex-
pressions we retain in RC the terms that accompanied at
least by one power of large logarithms:
Ly, Ly = In(Q*/m?), L, = In(8 ;5 /4) . Besides, in chosen
approximation we neglect the terms of the order of
0,,m> /e, m* /O inthe cross section.

The total RC to the Born cross section (21) is given
by the sum of the virtual and soft photon corrections and
the hard-photon emission contribution. The last one is
different for the exclusive and calorimeter event selec-
tion. In the considered approximation it is convenient to
write this RC in the form

do. RC a 2
dxdydz Can?

@, tI,).

The first term is independent on the experimental se-

lection rules for the scattered electron and reads
2

D= L L PY () S Bz Ltz
2 -z 2
+InYIn(Y/z*)+ 2InzIn(l1- z)- 2In(1- z)-

2
—%;+2Lga—z)+2L58+‘3p-m Zy
4z z 1-16z-
+ In , +
G )}< 1.0
+HZLW120-d”dquﬂ )
o Hl-u

2
1 max

zZ X
LiyZ uy = o
z z

: 1+
yllz(x[’y[’Qtz)+ 1_

where the quantities P (x),P7(2),C, X, 000X,

,,0;,Y and the definition of the function Li,(x) can

be found in Ref. [6]. The expression for the Z term is rather
cumbersome and it will be published elsewhere.

The second term, denoted by Zf , explicitly de-

pends on the rule for the event selection. It includes the
main effect of the scattered-electron radiation. In the
case of exclusive event selection, when only the scat-
tered bare electron is measured, and any photon,
collinear with respect to its momentum direction, is ig-
nored, this contribution is

Yimax

3= yP(z,L,) del[(LQ+lnY—1)
0

)+ Tl

P(l)(
1+ vy 1ty

T(x,,y,,00),

2 .
where the quantities X, V., 0}, ¥ can be found in

Ref. [6]. Note that the mass singularity that is connected
with the scattered-electron radiation, exhibits itself
through LQ term.

The situation is quite different for the calorimeter
event selection, when the detector cannot distinguish be-
tween the events with a bare electron and events where
the scattered electron is accompanied by a hard photon
emitted within a narrow cone with the opening angle

29(')around the scattered-electron momentum direction.
For such experimental setup we derive

c)j I#WﬁLﬂ

0 0 Vi

. 1 .
ysli (xs s Vs 3Q32)+ EE('X»')’:QZ)] .

3 = Pz, L)y (2
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