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This paper deals with the parametric excitation of potential surface waves (SWs) propagating in a planar plasma-metal
waveguide structure with a magnetic field perpendicular to the plasma-metal boundary. An external, spatially uniform,
alternating electric field at the second harmonic of the excited wave is used as the source of parametric excitation. It is
considered two cases, when the pump field is an eigen perturbation of the system, and when it is a non-eigen one.

PACS: 52.35.Mw

1. INTRODUCTION

At present, plasma-metal waveguides are widely used in
plasma and semiconductor electronics, gas discharges, and
various plasma technologies [1-4]. In practice many types
of waveguide structures operate with a magnetic field
oriented perpendicular to plasma-metal boundary [5-7].
Such waveguides are typical of RF and microwave
discharge devices, magnetrons, Penning sources, magnetic
discharge pumps, Hall detectors, divertor- and limiter-
equipped fusion systems, devices for the plasma processing
of metal surfaces, and so on.

The linear theory of potential SWs at a plasma-metal
boundary with a such magnetic field configuration has been
developed fairly well [6, 7], and some nonlinear
mechanisms for the self-interaction of these SWs have also
been investigated [8, 9]. However, the construction of a
nonlinear theory of SWs requires a detailed study of the
mechanisms for their excitation. In the waveguide structures
in question, SWs are difficult to excite by charged particles
because of the presence of an external magnetic field
perpendicular to the plasma-metal boundary. Our objective
here is to investigate the efficiency of parametric excitation
[10] of these waves.

2. PUMP FIELD THRESHOLD AMPLITUDE

We analyze the parametric excitation of a high-
frequency SW propagating along a plane plasma-metal
boundary in the y direction. A nonisothermal plasma

(Tg >>T,;, where T, and T; are the electron and ion plasma

temperatures, respectively) occupies the half-space X >0
and is bounded at x =0 by a perfectly conducting metal

surface. A steady magnetic field I:|0 is directed along the

X axis, which is perpendicular to the plasma-metal
boundary. The properties of SWs in an inhomogeneous
plasma are strongly influenced by the spatial distribution of
plasma density in the boundary layer. In plasmas with large
and small density inhomogeneities, the properties of SWs
are determined by the integral parameters of the plasma in
the region where the wave field is localized. [3]. In those
cases, the plasma-metal boundary can be assumed to be
sharp and the plasma density can be treated as uniform and

set equal to its mean value in the localization region of the
SW. Below, the efficiency of the parametric excitation of
SWs will be considered under the assumptions that the
plasma-metal boundary is sharp and the plasma is
homogeneous.

In [6], it has been shown that, in the waveguide structure
under consideration, high-frequency potential SWs can be
excited at frequencies higher than the electron cyclotron
frequency, ®>w.. In what follows, we consider the
parametric excitation of such waves at the boundary

2
pe >

where @, is the electron plasma frequency) and a metal. In

between a weakly collisional dense plasma (0% <<o

this case, the wavenumber k and frequency @ of the
excited SW are related by [6]

k? = 0° (0" — 05 [(Vie0e) , (1)
where Vi, is the electron thermal velocity. Analysis of

relation (1) shows that the phase velocity of an SW is much
higher than the electron thermal velocity.

To note, an important property of the waves under study
is that they are reciprocal [6]. This means that there exist
two oppositely propagating waves with the same frequency
® and the same (in absolute value) wavenumbers
k; =k(w) and k, =—k(w). This property makes possible
parametric excitation of the waves in question due to decay
instability [12]. That this method is efficient is evidenced by
the fact that the self-interaction of SWs [8] is accompanied
by the excitation of purely surface perturbations both at the
static and second harmonics. Consequently, SWs excited at
a plasma-metal boundary are not subject to the nonlinear
damping associated with the excitation of volume modes
[3], which can result in a loss of energy.

We assume that the source of parametric excitation is an
external, spatially uniform electric field oscillating at a
frequency , and directed along the external magnetic

field:
E = E, cos(mt). 2)

In this case, the spatiotemporal
condition [10] takes the form

synchronization
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®y =0+ o, 0=k (0)+k,(o). ?3)

We can see that the interaction between SWs with the

frequency w=w,/2 and the pump wave is the most
efficient.

The parametric excitation of SWs will be investigated in

a weakly nonlinear approximation [3, 10], which is valid for

sufficiently small SW amplitudes and in which the small

nonlinearity parameters are W, = e‘ AI,Z‘/(meVTZe) <<1,
where A, are the amplitudes of the excited SWs and

e, m, are the absolute value of charge and mass of an

electron, respectively. In this approximation, Poisson’s
equation and the nonlinear quasi-hydrodynamic equations
for electron motions in the SW field can be written as:

Ap =4nen,,

an . Vi
—=+div(ngV,) =0, 4)
ot
6\7e 7 7 e Nea |:|0] 2 Vne 7
+(VeVWV, =— < Vo——"—-V -VV,,
ot (Ve ) e m, { ¢ c Te . e
where ¢ is the wave potential, V, and n, are the

hydrodynamic velocity and density of the plasma electrons,
and v is the effective frequency of their collisions.

In the weakly nonlinear approximation, we can
substitute linear expressions [6] into the nonlinear terms in
quasi-hydrodynamic equations (4) to obtain a set of
nonlinear equations describing the dependence of the
amplitudes of SWs on time in their interaction with the
pump field. It should be kept in mind that, in a weakly
collisional plasma, the damping of SWs can have a strong
impact on their excitation. That is why, in analogy with
[10], we introduce additional terms that take into account a
weak nonlinear damping of the excited waves. Thus, the
spatiotemporal dynamics of the excitation of SWs by an
external, spatially uniform, alternating electric field at the
second harmonic of the frequency of the excited wave can
be described by the following set of nonlinear equations:

oA oA : .
—L+V, EI+VA1 =—iaA)A;,

ot
oA oA _ . ©)
—2FV, 2+ VA, =—iaA A,

ot oy

where the coefficient o =ewF /(4 meVTze) characterizes the

interaction of the excited SWs with the pump field; the
parameter

F = 0 (0° — 0) /[ 07 207 - 0g,)]
accounts for the influence of the magnetic field and plasma
density on the efficiency of the wave excitation;
Vg =V 0 (* - (1)§e)1/2 I20? - coge) is the group
velocity of the SWs, and A =14 E, with rge =Vio /@,
being the electron Debye radius. The upper (lower) sign in

Egs. (5) corresponds to the propagation of the first wave in
the positive (negative) direction along the Y -axis and the

propagation of the second wave in the negative (positive)
direction. In what follows, we consider the temporal
dynamics of the SW amplitudes in the case in which the
second terms on the left-hand sides of Eqgs. (5) can be
neglected.

Analysis of Egs. (5) yields the following time
dependence of the amplitudes of the excited waves:

| A =] Aj(0) > +( A ()] +] Ay(0) *
Shz(on|AO|t)exp(—2vt), j=12.

For oc‘AO‘t > 2, this expression becomes

A (O =1/24]| A 0) +[A, (0 explo] Ay -v)t,  (7)
in which case the phases approach the steady-state value
/4.

Expression (7) implies that SWs can be excited under
the condition y=a|Ay|—v>0. This condition determines

(6)

the threshold amplitude of the pump field |Ay|_ , above

which the SWs can be excited parametrically:
A, =4vmeVr /(e Fo). (®)

3. NON-RESONANT INTERACTION
First, let us investigate the saturation of the decay
instability in the case of non-resonant interaction, i.e. when
®, is non-eigen frequency. To do that, it is necessary to

consider interactions between harmonics of the wave,
according to the nonlinear quasi-hydrodynamic equations. It
gives the following nonlinear equations for the amplitudes
of the excited SWs (to third order in the field amplitude):

OA . .
?1+VA1 =—iaA) A, —l(ﬁ1|A1|2 +B2|A2|2)A1’
©
OA . .
#+VA2 =—iaA) A —|([31|A2|2 +B2|A1|2)A2’

where B, =10e® /(mVsh)Fo is the coefficient of self-
interaction of SWs of the given type, obtained in [8],
B, =-7e’®? /(18mM2V w%e)Fm is the coefficient of
interaction of the both excited waves.

Accounting for the self-interaction of each SW and the

interaction  between them  violates spatiotemporal
synchronization condition (3). For the dense plasma under

consideration, we have ‘Bz‘ <<‘[31 , hence, the nonlinear

frequency shifts of both the first
2 2

(Ao =By A" +Ba A7) and the

(A(DNL2:I31‘A2‘2+32‘A1‘2) excited SWs are governed

primarily by their self-interaction. Thus, the frequency
mismatch between the excited SWs and the pump field
increases with time. As a result, SWs saturate at the same
amplitude, which is independent of the initial conditions:

‘Ai‘st _ ‘Az‘st :[ o’ A -V }1/4 (10)
A AL [ AG B
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As time elapses, the phases of the SWs approach the value

arg Ajst = —O,Sarccos[—«/ 1-v? /(oczAg)} . (1)

Numerical solution of equations (9) shows that the time
required for the phases to reach this value decreases as the
pump field amplitude and plasma density increase and the
electron temperature decreases. Hence, the development of
parametric instability leads to the excitation of two
oppositely propagating SWs with the same frequency and
amplitude. The superposition of these waves produces a
standing SW.

4. RESONANT INTERACTION
Now let us consider the resonance interaction when
pump field is an electric field of Langmuir wave. In this
case the system (5) should be expanded with one dynamical
equation for the amplitude of Langmuir wave:

OA) /ot =—io A A, (12)
where o, is the resonant interaction constant. In many
cases the amplitude A, can be assumed as constant. This
imposes the following restriction to energy of SWs:

W, /W, oc(Al,z/AO)z(d/L) <<1, (13)

where d is the SW penetration depth into the plasma, L is
the characteristic length of the system. For the semi-
bounded plasma: d<<L. Thus, even in the case of
comparable amplitudes A, with the amplitude of pump

field, A, can be considered as constant. In this case the
resonant interaction is also described by (9).

5. CONCLUSIONS
The analysis carried out has shown that, in both cases of
resonant and non-resonant interaction at a fixed amplitude
of the pump field, a strengthening of the external magnetic
field, as well as a reduction in the plasma density, leads to
an increase in the threshold pump field amplitude and to a

decrease in both the linear growth rate and the saturation
amplitude of the excited SWs.

An increase in the plasma electron temperature also
leads to an increase in the threshold pump field amplitude
and a decrease in the linear growth rate.

Thus, the parametric excitation of the SWs under study
is found to be most efficient for waveguide structures with a
sufficiently dense plasma in weak magnetic fields.
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Moscow:

IMAPAMETPUYECKOE BO3BYKIEHHUE IIOBEPXHOCTHbBIX BOJIH B IIVIASMEHHO-
METAJVIMYECKUX CTPYKTYPAX C IEPIIEHUKYJIAPHBIM MAT'HUTHBIM ITOJIEM

10.A. Akumos, H.A. A3apenxos, B.Il. Oneghup
B pabote paccMOTpeHo napameTpuueckoe Bo30YKACHHE MOTEHIMAIbHBIX TIOBEPXHOCTHBIX BOJIH, PACIIPOCTPAHSIOIIUXCS
B IUIAHAPHOW BOJHOBOAHOW CTPYKTYpe “Iia3Ma-mMeTayul” ¢ MepHeHANKYISPHBIM K TpaHHIle MATHUTHBIM NosieM. B kadecTse
HCTOYHHKA MAPaMETPUUYCCKOr0 BO30YKIACHHUS HCIIOJIB3YETCs BHEIIHES OHOPOJHOE B MPOCTPAHCTBE U IMEPEMEHHOE BO
BPEMEHH DJICKTPUYECCKOE IMOJIC HAa BTOPON TapMOHHKE BO30Y)KIAacMbIX BOJH. PacCMOTpEHBI ciydad, KOTJa IOje HaKauyKd
SIBJISICTCA KaK CO6CTBCHHBIM, TakK U HeCO6CTBeHHI)IM BO3MYUICHUEM CHUCTEMBI.

INAPAMETPHUYHE 3BY/’)KEHHS IIOBEPXHEBUX XBWJIb ¥
IVIABMOBO-METAJIEBUX CTPYKTYPAX I3 HEPHEHIUKYJIAPHUM MATHITHUM ITOJIEM

10.0. Aximoe, M.O. A3apenkos, B.I1. Onegip
B po0oTi po3risHyTO mapaMeTpuyHe 30YKEHHS IMOTCHIIAIbHUX ITOBEPXHEBHX XBWIIb, IO PO3HOBCIOIKYIOTHCS Y
IUTAHApHIA XBHJICBOIHIM CTPYKTYypi “IUtasmMa-metan” 3 IMEpIeHAWKYISIPHUM IO MEXi MarHiTHUM mojeM. Sk pkepero
MapaMeTPUIHOro 30yIKEHHS BUKOPHUCTOBYETHCS 30BHIITHE OJHOPIAHE y MPOCTOPi Ta 3MiHHE Y Yaci eNeKTpUYHE IoJie Ha
JpYyTiii TApMOHII XBHJIb, IO 30YMKYIOThCA. PO3TIISHYTO BHIIAAKH, KOJH ITOJIE HAKAYKH € SK BIACHUM, TaK 1 HEBIACHUM
30yIPKEHHSIM CUCTEMH.
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