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On the ground of the theory of singular integrals with Cauchy kernel the exact plasma dispersion functions (PDFs) are
introduced and studied. Those PDFs make more exact the weakly relativistic PDFs and generalize them on the case of

arbitrary plasma temperature.
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1. INTRODUCTION

Plasma waves have a wide range of applications.
Essential to each of the applications is knowledge of the
dielectric properties of the plasma. Analytical treatment of
those properties leads to expressions for the dielectric
tensor in terms of plasma dispersion functions (PDFs).

As the non-relativistic PDF, W(z)=exp(-z2)[l+

(2i/ﬁ)}exp(t2)dt], introduced into the theory of plasma
0

and tabulated in complex region in the works [1,2],
respectively, (or PDF, Z(z)=iJzW(z), introduced in the
work [3]), so and the weakly relativistic PDFs, introduced
in the work [4], are approximate ones, since have been
derived through some approximations in the parameter
Vp (u=(c/Nrg)? Vrg=4T/my, my is the rest mass of

electron).

The primary purpose of the present work is
introducing the exact relativistic PDFs, which makes
more exact the non-relativistic PDF and the weakly
relativistic PDFs and generalize them on the case of
arbitrary plasma temperature. It is achieved on the ground
of a deep connection between the theory of plasma waves
and the theory of Cauchy type integrals.

2. INTRODUCING OF THE EXACT
RELATIVISTIC PDFs
Starting from the 1% integral form of Trubnikov’s
plasma dielectric tensor, that neglects ion dynamics, one
can write it in Cartesian coordinates with z-axis directed
along static magnetic field in the next equivalent form [5]
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where @ and @, are an angular wave and plasma
frequencies, K,(z) is Macdonald function of second
order, N, =k,c/e is longitudinal refractive index, Q.=

eB/(myc) is the electron cyclotron frequency,
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In the expression (2) p=p/(myc) is normalized
momentum, x :\/(1 +97+ ﬁi)—\/(l + E/Z/) s B = ,/il +p2 i—

N,By—nQg/w and 1y, = My =Tyx =Tyy =0, 1y

)

=Ty =
y=hy=1, 1;=2.

Bortnatici and Ruffina shown that for the case n>0
anti-Hermitian parts of the functions,

F£+3/2(N//,nﬂc/a),y) “uf2m z'n )(N//,nQ Jo,u), can  be

exactly expressed in terms of modified spherical Bessel
functions [6]. Obviously, the same result takes place and

for  functions, Zg+3/2 (N, Q¢ Joo, 1) =z (N .02, )/

(2K, (), that appear in the expression (1) since they

differ from functions, (N,,nQ./w,u), by the factor

Fq0+3/2
not depending of two first arguments. In first, let us
generalize these results on the case of arbitrary harmonic
number, n, using some facts from the theory of Cauchy
type integrals [7,8]. Then on the same way we’ll give the
exact analytical expressions for the Hermitian parts of the
functions, zg+3/2(N nQ; Jo,u) and define these whole

functions as the exact relativistic PDFs.
Using in the inside integral of the expression (2) the
first of the Sokhotskii-Plemelj formulas,
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corresponding to the Landau rule of passing the pole, and
passing to the arguments used by Robinson [9-11]:

x=p,Ju/2, 2=u(l-nQc/o) , a=uN}/2 one can, at once,
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where limits of integration, x*, can be obtained from the
condition of appearing the pole in the inside integral of
the expression (2): B, <0. Then for 0<N, <1 the limits

of integration equal xt = gra’?(1-z/ u)+

Ja-z+22/2u)] and for N,>1 ones equal x* =+w,
x~=pla’?(1-z/u)-a-z+2*/2u)] ; here for shortness

was used denoting /3 = u/(1—2a). The direct integration in
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the expression (4) gives anti-Hermitian parts of

functions Z 13/2(a,z,y). So, for the case rj=0 and

0<N, <1
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here 1g,y»(x) is modified Bessel function of half-integer

ImZg,y,(@.2,u)=-

order and a* :y(l—l/\/E). By the similar way for r; =0
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for arbitrary z; here Kg,;/;(x) is Mac Donald function of

and N, >1

Imzq+3/2 a,z ILI

half-integer order.
It is known [7, 8] that for the density of Cauchy

integral, ¢(t), satisfied to the Holder condition and

integrated along the real axis in the Cauchy sense real and

imagine  parts of the  boundary  function,

FTf(t)=u(t)+iv(t), are mutually single significantly

connected by the Hilbert transforms

W)= Lp T UET gy L vk (8)
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Here and everywhere letter P before integrals shows that
integrals are understood in the sense of principle value.

Consequently, implying v(t) = IquH/z (a,z,u) one can use
the second transform to express real parts of the boundary
functions, Zg+3/2 (a,z, u) , through their imagine parts. Then
for the case 0 < N, <1 one can receive
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In correspondence with the Sokhotskii-Plemely formula,

giving the right sign (as in the weakly relativistic case) of
anti-Hermitian parts of the functions, z{ . (a.z,x), and

Re Zg+3/2 (a, Z,,u)

®

corresponding to passing of the contour of integration
above the pole, one can receive the exact integral form for
the whole those ﬁJnctions
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For the case N, >1 using the expression (7) for anti-

Hermitian parts of the functions, Zg+3/2(a,z, u), by the

similar way one can obtain
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where the contour of integration is passing below the
pole.

Integral forms (10), (11) define analytically the exact

relativistic PDFs for the cases 0<N, <1 and N, >1,

respectively.

3. ANALYTICAL PROPERTIES OF THE
EXACT PDFs

In first, let us study the integral form (10) defining the
exact relativistic PDFs for the case 0<N, <1 that is

interesting from the point of view of the EC waves
description in magnetized plasma; for shortness of writing
from now on we are missing arguments of these
functions. Using the recurrent formula for modified
Bessel functions, 1,,,(z)=1,(z)-(2v/2)l,(z), one can
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Both integrals in the expression (12), using the known

integral [12]
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here, for shortness, noting s=,/u(u/(2x)+1/,[p was used.

Thus, from (12) we receive a recurrent relation for the
exact PDFs
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that is

description of ICR waves in relativistic plasma, by the
similar way one can receive the same recursive relation
(15). Only in this case it is necessary to use the recurrent
formula for Mac Donald functions, K, ,,(z2)=K,_;(2) +

(2v/7)K,(2) , and the integral

(15)

For the caseN,>1, interesting for the
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that follows by integrating in the parameter p from the
known integral [13]
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Rez>0).

Then instead integrals (13), (14) one can obtain the
integrals
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Here, for shortness, noting s =/a— 7 +72/(2u) was used.
The integrals (13), (14) and (16), (17) are moments on the
density in the respective Cauchy integrals defining the

exact PDFs, ZS+1 o and have the next physical sense: the

integrals (13), (16) are the densities of resonance
electrons in the respective Dopler spectral line of
absorption, the integrals (14), (17) define z-coordinate
of this spectral line.

So, from all those integrals it follows the next theorem:
z-coordinates of Dopler absorption spectral lines and
densities of resonance electrons in these lines don’t
depend from the direction of waves propagation and are
defined by the moments (13), (14), (16), (17) of anti-
Hermitian parts of the exact PDFs.

Those integrals have also and the mathematical sense:
(13), (16) are first and (14), (17) second coefficients in

asymptotic expansion of the PDF, Zg+1 20
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Substituting the expression (18) into the recursive relation
(15) one can receive recurrent formulas for calculating an
arbitrary coefficient in this expansion through first two

coefficients
Ad = paAd*? 4 (q+1/2)A%] - gand , + pAd

(18)
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One can verify the formulas for the 1% and 2™ derivatives
of the exact PDFs in the parameter z

@z =BIZ§ +@/ u-1Z1],

@) = B2 + 2 -0+ Bz + (o =128, .
Excepting PDFs, z{,
(15), (20) one can obtain the usual linear deferential
equation in the parameter z for the exact PDFs
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that also may be useful for their study.

At last, from the formulas (4) by differentiation in the
parameter a it follows the identity

dzg /da=(Zg.)">
connecting derivatives of these PDFs in the parameter a

and z that coincides with the respective identity for the
weakly relativistic PDFs.

(20)

and zg, from the expressions
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