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The  penetration  of  electrostatic  field  outside  the  shield  at  the  part  the  antenna  faced  to  plasma  is  studied  in  the 
framework of two-dimensional numerical model. It is shown that single-layer Faraday shield does not have satisfactory 
shielding properties. The shielding can be improved sufficiently using overlaying two-layer shield.
PACS: 52.50.Qt

INTRODUCTION
To protect antenna from the direct contact to plasma 

and  to  prevent  penetration  of  the  electrostatic  field 
induced by antenna, the Faraday shield is used. Ideally, it 
should  be  made  from  anisotropic  substance  with  high 
conductivity  in  one  direction  and  low  conductivity  in 
others. Since such substance does not exist the shield is 
normally made from discrete metallic elements. For the 
reason  of  discreteness  of  the  shield,  a  portion  of 
electrostatic  field  can  penetrate  outside  the  volume 
surrounded by it. Outside the antenna box, both parallel 
and  perpendicular  to  the  steady  magnetic  field 
components  of  the  electrostatic  field  cause  strong 
oscillatory  motion  of  ions  and  electrons  of  scrape-off-
layer low-density plasma that normally exists in the shield 
vicinity.  If  the  energy  of  oscillatory  motion  of  ions 
exceeds the energy threshold of sputtering the sputtered 
material of the shield goes into the plasma increasing the 
concentration of impurities. 

Another  unfavorable  effect  that  is  caused  by  the 
penetration of electrostatic field through Faraday shield is 
the  excitation  of  waves  in  plasma  by  the  electrostatic 
mechanism [1]. Both slow and fast wave could be excited 
with  it.  While  fast  wave  excitation  does  not  cause 
problems, the slow wave excitation is adverse [2]. 

The electrostatic field penetrates through the shield at 
all its surface. The part of the shield faced to plasma is of 
primary interest. 

DESCRIPTION OF MODEL
We consider the Faraday shield consisting of similar 

bended  strap  elements  placed  periodically  at  the  same 
distance each from other (see Fig.1). We assume that the 
period of the shield is much smaller than the wavelength 
and than the every size of antenna. The first assumption 
allows us to introduce the electric potential  ϕ  and use 
the  Laplas  equation  to  describe  electric  field  in  small-
scale area near the shield. The second assumption makes 
it possible to ignore the dependence of potential from z -
coordinate. Because of the periodicity of the shield in y  
direction  one  could  expect  that  the  dependence  of  the 
potential  along  this  coordinate  is  also  periodical  with 
slowly varying  amplitude.  In  our  consideration the  last 
variation is neglected because it is of the same order as 
the  already  neglected  variation  of  the  potential  in  z -
coordinate.  Thus,  the problem could be considered at  a 
single period of the shield accounting periodic boundary 

conditions  in  y  direction.  At  the  period,  there  is  a 
reflection  symmetry.  For  this  reason  the  domain  for 
Laplas equation in  y  direction is  chosen as a  half of 
period. 
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Fig.1. A fragment of strap antenna covered by two-layer  
Faraday shield

To operate with dimensionless quantities and variables 
we  scale  the  coordinates  by  the  shield  half-period 
x=2x /D ,  y=2y/D  and  the  potential  by  the 

potential  at  the strap surface  ϕ=ϕ /ϕ s .  The  Laplas 
equation reads:

∇2 ϕ=0  .                                  (1)
The  boundary  conditions  are  the  following.  The 

condition  ϕ∣x=0=1  determines  the  potential  at  the 

strap. The condition 
∂ ϕ
∂ x

∣x=∞=0  nullifies the electric 

field at the infinity. Owing to the reflection symmetry and 
periodicity, the boundary conditions for potential in  y  

direction  become Neumann’s  ones:  
∂ ϕ
∂ y

∣y=0=0  and 

∂ ϕ
∂ y

∣y=1=0 .  There  is  also  the  internal  boundary 

conditions  ϕ∣x=δ i , y∈ 0,d i 
=0  and 

ϕ∣x=δe , y∈1 −d e ,1 =0  nullifying the potential at the 
shield  elements.  Here  δ  is  the  normalized  distance 
between antenna strap and shield element in x  direction; 
d  is the normalized half-width of the shield element; 

indices i  and e  denote inner and outer shield elements. 
The equation (1) with the above mentioned boundary 

conditions  is  solved  numerically  using  finite  difference 
method. The boundary condition at x=∞  is substituted 
by the same condition at finite value of  x :  x= x inf . 
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This  value  is  chosen  large  enough  in  order  not  to 
influence on the solution.
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Fig.2. The domain of boundary problem for Laplas 
equation

Besides  the  calculation  of  potential,  two  average 
values  of  electric  field  strength 

E i= 1
li
∫
l i

Ex
2E y

2 dl  are  calculated.  The  first 

contour l 1  along which the averaging is performed (see 
Fig.2)  represents  the  nearest  to  the  front  of  the  shield 
plane from the outer side. The second contour l2  is the 
projection of the outer surface of the shield to the plane 
 x , y  .

CALCULATION RESULTS
First the single-layer shield is analyzed. The contours 

of the distribution of the potential in the case d e=0 .8  
and δ e=1  are shown in Fig.3. 
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Fig.3. Contours of the distribution of potential in  
the  case d e=0 .8  and  δ e=1 .  Shield 
element is shown by bold line.

One can see there that the electric field penetrates outside 
the shield through the slots between the shield elements. 
The dependences of average electric field strength  E1  
on  the  width  of  the  shield  element  d e  and  on  the 
distance between the strap and the shield element δ e  are 
displayed in Figs. 4 and 5. The dependences are apparent: 
the electric field strength outside the shield decreases with 
decrease  of  the  shield  transparency  T=1 −d e  and 

with  increase  of  the  distance  δ e  between  shield  and 
strap.  However,  even  for  low shield  transparency,  it  is 
order of the electric field strength inside the shield. 

 

0 . 0 0 0 . 2 0 0 . 4 0 0 . 6 0 0 . 8 0 
0 . 0 0 

0 . 2 0 

0 . 4 0 

0 . 6 0 

0 . 8 0 

1 . 0 0 

ed

1E

Fig.4. Dependence of average electric field strength E1  
from the width of the shield element d e
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Fig.5. Dependence of average electric field strength E1  
from the distance δ e  between shield element and strap

For  double-layer  shield  the  transparency 
T=1 −d e−d i  could both positive and negative. The 

second case relates to the situation when the inner  and 
outer shields overlay. The distribution of potential in the 
second case is shown in Fig.6.
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Fig.6. Contours of the distribution of potential in the case 
d e=0 . 6 , d i=0 . 5 , δ e=1  and δ i=0 . 75

In this case the penetration of the potential outside the 
shield is less than in the case of single-layer shield. 

The dependences of electric field strengths E1  and 
E2  on the width d e  of outer shield element are 
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displayed in Fig.7. Since the contour l 2  is closer to the 
shield than the contour l 1  the strength E2  is always 
stronger than E1 .
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Fig.7. Dependences of average electric field strengths 
from the width of the outer shield element d e  the case 

d i=0 . 5 , δ e=1  and δ i=0 . 75

Both  strengths  decrease  with  d e .  For  E2 ,  the 
decrement  becomes  stronger  near  the  point  where  the 
shield transparency T  changes sign. 

SUMMARY AND DISCUSSIONS
The  calculations  of  the  distribution  of  electrostatic 

fields in the vicinity of Faraday shield show that the field 
penetrates outside the shield both in the case of single-
layer  and  double-layer  shields.  The  fields  outside  the 
shield rapidly decrease with the distance from the shield 
with characteristic space scale order of the shield period 
D .  In  this  respect  the  shield  with  smaller  period  is 

preferable  because  the  volume  occupied  by  the 
electrostatic  field  is  smaller.  Moreover,  the  Fourier 
spectrum of the electrostatic field strength in y  direction 

starts  from  the  minimum  value  k y min=2π /D  that 
increases with decrease of shield period. For fine shield 
the cut-off zone for slow wave is wider and the excitation 
of this wave is less effective. 

For the single-layer shield, the electric field strength at 
the outer surface of the shield is order of that one between 
the shield and the strap. It decreases with decrease of the 
shield  transparency  and  with  increase  of  the  distance 
between the shield and antenna strap. However, even for 
shields  with  low  transparency  its  value  remains 
unacceptably  high.  If  plasma  ions  are  present  in  the 
vicinity  of  the  shield,  their  energy  of  motion  in  the 
electrostatic  field  could  exceed  the  threshold  of 
sputtering. 

In the case of overlaying the double-layer shield fully 
protects the strap antenna from the fluxes of particles. The 
electrostatic field outside this shield is  more than order 
less  strong  than  the  field  inside  the  shield.  Thus,  the 
criterion  of  non-sputtering  could  be  met.  The  obvious 
disadvantage  of  the  double-layer  shield  is  low 
transparency for the electromagnetic field. However, the 
last  one  could  be  increased  keeping  the  small  space 
between two layers  in  the  front  part  of  the  shield  and 
enlarging it at the side parts.
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ПРОНИКНОВЕНИЕ ЭЛЕКТРОСТАТИЧЕСКИХ ПОЛЕЙ СКВОЗЬ ФАРАДЕЕВСКИЙ ЭКРАН 
ПОЛУВИТКОВОЙ ВЧ АНТЕННЫ

В.Е.Моисеенко

В рамках двумерной численной модели изучено проникновение электростатических полей сквозь экран на его 
участке,  обращенном  к  плазме.  Показано,  что  однослойный  Фарадеевский  экран  не  обеспечивает 
экранирование  на  приемлемом уровне.  С  использованием двухслойного  экрана  экранирование  может  быть 
существенно улучшено.

ПРОНИКНЕННЯ ЕЛЕКТРОСТАТИЧНИХ ПОЛІВ КРІЗЬ ФАРАДЕЇВСЬКИЙ ЕКРАН 
НАПІВВИТКОВОЇ ВЧ АНТЕНИ

В.Є. Моісеєнко

У  рамках  двовимірної  числової  моделі  вивчено  проникнення  електростатичних  полів  крізь  екран  на  його 
частині, що звернена до плазми. Показано, що одношаровий Фарадеївський екран не забезпечує екранування на 
прийнятному рівні. З використанням двошарового екрану екранування може бути суттєво поліпшене.
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