
NUMERICAL MODELLING OF MULTIBEAM ACCELERATING 
STRUCTURES

N.M. Gavrilov, D.A. Komarov, D.A. Bogachenkov, J.N. Strukov
The Moscow Engineering - Physical Institute (State University)

The three-dimensional multibeam numerical simulation has been carried out on the basis of integral equations. 
Dispersion equations and expressions for shunt impedance and Q-factor have been obtained for E and H oscillations 
in cylindrical cavities. The tensor Green function and filament-like representation of the beam were used. 

PACS: 29.17.+w

With  the  purpose  of  creation  of  industrial  linear 
accelerators of ions with a current of a bunch more than 
100  mА,  works  on  studying  multibeam  accelerating 
structures working on Е and Н kinds of fluctuations, and 
also  resonators  with  the  electrodes  of  spiral  type 
overlapping  a  range  of  lengths  of  waves  2...15 m 
recently are actively conducted.

Three-dimensional  modelling  of  similar  systems 
with the help of modern software packages of applied 
electrodynamics  such  as  MAFIA,  ISFEEL 3D,  HFSS 
7.0 or ANSIS 7.0 is or expensive and designed on the 
use  of  high-efficiency  computers,  or  basically 
unpromising,  as  in  the  case  with  spiral  systems  and 
systems  on  basis  Н-resonators  in  a  range  of  meter 
wavelengths.  In  this  work the  numerical  algorithm of 
calculation of similar systems is offered. 

1. MODELLING MULTIBEAM SYSTEMS 
ON BASIS Е AND Н RESONATORS

As is known [1] system of Maxwell equations which 
describes electromagnetic fields in the given area, can 
be shown to two wave equations concerning vector and 
scalar  sizes  which  name  potentials  of  an 
electromagnetic field. Electric and magnetic fields can 
be determined from the following equations:
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where ϕ, A
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 are defined from the d’Alambert equation:
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In  the  right  parts  of  the  equations  the  vector  of 
density  of  a  current  and  the  volumetric  density  of  a 
charge stand respectively. In that specific case the time 
dependence can be considered harmonious, and for the 
solutions of equations (2) to search as late potentials:

∫

∫

→

→

→

→

⋅
=

⋅
=

V
m

V
m

dV
rrR

r

dV
rrR

r
A

,
),(4
)(

,
),(4
)(

0

00

0

00

rr
rr

rr
rr

r

π
ρεφ

π
δµ

                            (3)

where  mA
r

,  φm -  complex  amplitudes,  0→r
r

 -  vector 

radius  of  a  point  source,  rr -  vector  radius  of  an 
observation point,  R - distance from a source up to the 
observer. For an external problem of electrodynamic a 
unique condition, set in (2) is the regularity on infinity 
or the condition of radiation which apparently is carried 
out.

We  shall  consider  now  an  internal  problem  of 
electrodynamics  in  the  following  statement:  it  is 
required to define an electromagnetic field in cylindrical 
area  with  the  limited  conducting  surface.  Then  the 
system (2)  remains  constant,  but  the  solution  will  be 
searched in the following form:
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where  ( )0 0 0, , , , ,G r z r zφ φ
t

 is  so-called  tensor  or  a 
Green dyad [2] taking into account influence of external 
borders  on  electromagnetic  process  in  volume.  As 
shown in [3] for the cylindrical system of coordinates 
the  dyad  has  an  explicit  expression  in  index 
designations. As the table this tensor can be presented as 
follows:
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where the factors of a matrix are the following:
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where  ψmn,  fmn,  gmn are  the  own  functions  of  the 
Helmholtz equations with boundary conditions such as 
an  electric  wall,  and  the  functions  mnmn f~,~ψ  define 
solutions  with  boundary  conditions  such  as  magnetic 
walls  for  the  given  area.  Definition  of  the  given 
functions  and  calculation  of  the  component  Green 
tensor allows to obtain the explicit solution. 

Representing accelerating systems as a closed area 
with  the  currents  distributed  inside  (current-carrying 
elements  are:  a  tube  of  drift  for  the  Е-resonator,  pin 
holders for the  Н-resonator) it is possible to obtain the 
integrated  equations  describing  the  electromagnetic 
process in the resonator. So for Е - the resonator relative 
to the z-component the current density on a drift tube is 
presented as Fourier series:
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For Н - the resonator the integrated equation can be 
written down as:
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The decision of  these equations  can be carried by 
Galerkin method, and for  (1) it  is  more preferable to 
choose Fourier series as basis, and for (2) to use sewing 
together on points. Results of calculation are shown on 
fig.1, fig.2, fig.3.

Fig.1. Dependence of wave number
of period length (Е - mode)

Fig.2. Dependence of shunt resistance from length 
period (Е - mode)

Fig.3. Dependence of wavelength from length of the 
resonator (Н - mode)

Testing  of  the  program  was  carried  out  by 
comparison  of  results  of  calculation  by  an  offered 
method  and  calculation  with  the  help  of  package 
ISFEEL 3D. Comparisons (for  Е-modes) have shown, 
that  the error of definition of frequency is lesser than 
3%  at  a  time  of  processing  10...20  seconds  while 
computer modelling for four drift tubes on an azimuth 
has  taken  75  minutes  for  one  point.  By  the  shunt 
impedance the error lays within the limits of 10%. 

2. MODELLING MULTIBEAM SYSTEMS 
ON BASIS OF SPIRAL ELECTRODES

Of greatest interest for acceleration of heavy ions are 
structures with electrodes of a spiral type. In [4] one of 
possible variants of the similar accelerator is presented. 
Actually  the  resonator  works  as  follows:  the  spiral 
electrode being a resonant element is  activated on its 
own lowest frequency. The currents reaching the spiral 
form the distribution of superficial charges at surfaces 
of conducting ring (CR) with drift tubes (ТD) and then 
between  ТD  the  accelerating  potential  difference  is 
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formed. Thus, from the experiment it is known, that the 
size  of  the  external  resonator  does  not  influence  the 
frequency of a spiral, as well as accommodation of an 
electrode.  At  spatial  arrangement  of  spirals  with 
quadrupoles the characteristic frequency of  a  working 
mode of fluctuations ceases to depend on the number of 
electrodes, that also is the experimental fact.

All  above-mentioned  listed  features  allow  us  to 
formulate the following mathematical consequences: in 
the  solution  of  the  Helmholtz  equation,  there  is  no 
necessity  to  use  the  Green  tensor  function  as  the 
influence  of  the  screen  on  the  oscillatory  process  is 
insignificant.  The  taking  into  account  of  several 
electrodes  is  also  unessential.  The  problem  of  the 
analysis  as  a  matter  of  fact  is  reduced  to  a  problem 
about a field created by a spiral, fixed on the conducting 
plane. Thus, for the solution we shall use a method of 
secondary sources: conducting surface we shall replace 
by the mirror image of a spiral,  and for a current we 
shall write down, using threadlike model:
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where  ds is the element of spiral length  ( )sτr  is the 
vector of a tangent to a spiral. 

The vector potential will look like:
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where R+, R- the distances between an observation point 
of a source and a point on the mirror image respectively.

The equation of a spiral in this case will be written 
down as follows:
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where r0,  φ0, z0 are the coordinates on a spiral,  а is the 
radius of the coil, b is the step of a spiral, ψ0 is the angle 
of winding. Distance up to observation points :
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Note  the  importance  of  Equation  (12)  as 
parametrical  forms of an length element, since in this 
case  the  current  acts  as  an  explicit  function  of  the 
coordinate  z  that  allows  essentially  to  facilitate  the 
model.

Substituting (10) in expression for vector potential, 
we  shall  receive  the  integrated  equation  being 
mathematical model of a physical problem:
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Making  consistently  all  the  vector  operations  and 
entering explicit expressions for the Frene’s trihedron, it 
is possible to write the kernel of the integrated equation 
in the following final form:
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and to reduce the equation to the  initial form:
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with     
2sin

δλ
ψ

= .

The solution can be obtained also by the method of 
sewing  together  on  points.  All  given  algorithms  are 
realized as program modules, the time of the account by 
which is some tens seconds. Results are submitted on 
fig. 4.

              

Fig.4. Dependence of resonant frequency of a spiral on 
its length

Results of calculations compared with experimental 
data  showed that  the  error  of  definition  of  frequency 
lays within the limits of 5%.

3. CONCLUSIONS
In  this  paper  were  presented  the  electrodynamic 

models  of  multibeam  systems  based  on  Е and  Н 
resonators  and  structures  with  the  spiral  electrodes, 
admitting  numerical  realization  in  MATCAD 
environment.
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ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ МНОГОЛУЧЕВЫХ
УСКОРЯЮЩИХ СТРУКТУP

Н.М. Гаврилов, Д.А. Богаченков, Д.А. Комаров, Ю.Н. Струков
На  основе  метода  интегральных  уравнений  проведено  трехмерное  численное  моделирование 

многолучевых  ускоряющих  структур.  Для  Е-  и  Н-  резонаторов  при  использовании  нитевидного 
представления  тока  источника  и  тензорной  формы  функции  Грина  для  цилиндрического  резонатора 
получены дисперсионные уравнения, выражения для шунтового импеданса и добротности. 

ЧИСЕЛЬНЕ МОДЕЛЮВАННЯ БАГАТОПРОМЕНЕВИХ
ПРИСКОРЮЮЧИХ СТРУКТУР 

М.М. Гаврилов, Д.А. Богаченков, Д.А. Комаров, Ю.Н. Струков
На  основі  методу  інтегральних  рівнянь  проведене  тривимірне  чисельне  моделювання 

багатопроменевих  прискорюючи  структур.  Для  Е-  и  Н-  резонаторів  при  використанні  нитковидного 
зображення струму джерела  і  тензорної  форми  функції  Гріна  для  циліндричного  резонатора  отримані 
дисперсійні рівняння, вирази для шунтового імпедансу і добротності. 
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