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The spatial structure and nonlinear dynamics of vortices in plasma lens for high-current ion-beam focusing have

been investigated theoretically.
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1. INTRODUCTION

It is known from numerical simulations and
experiments that vortices are long-lived structures in
vacuum. However, the acceleration of evolution of
vortices in electron plasma was observed in laboratory
experiments. Same dynamics of vortices should take
place in near wall turbulence of nuclear fusion
installations, where the crossed configuration of
electrical and magnetic fields also is realized.

The charged plasma lens, intended for focusing of
high-current ion beams, has the same crossed
configuration of fields [1]. It is important to know the
properties of vortices at the nonlinear stage of their
evolution. It has been shown theoretically in this paper,
that after reaching the quasi-stationary state the
electrons in a field of a vortex rotate around its axis with
the higher velocity in comparison with the velocity of
azimuthal drift of electrons in the fields of the lens.
Slow and quick vortices are contacting combinations of
two vortices rotated in the opposite directions.

The instability development in the initially
homogeneous plasma causes that the vortices are born
pairs. Namely, if the vortex-bunch of electrons is
generated, the vortex-hole of electrons occurs near it. It
has been shown, that at small inhomogeneous electron
density in the real experimental lens the preference is
realized in the behaviour of vortices. Namely, the vortex
- bunch goes to the region of a higher electron density
n. , and vortex — hole goes to the region of lower n. .

2. JOINT DEVELOPMENT OF TWO
INSTABILITIES

In [2] the dispersion law of oscillations, possible in
the plasma lens is presented. The obtained dispersion
law describes the joint development of two instabilities.
Namely, in a limiting case lgth,<<k,Vy; basically, the
instability of the ion stream relative to electrons
develops. Here Vy, is the ion beam velocity, k, is the
longitudinal wave vector, lg is the azimuthal angular
number, 0, is the angular velocity of the electron drift
in the crossed fields. Thus, the growth rate of the
instability development in the case lgt,<k,Vu: increases
with the growth of k,. In the limiting case letye>>k, Vi
the instability of electrons, drifting relative to ions in the
crossed fields in the cylindrical system with a radial
gradient of the magnetic field develops. Slow vortices
have the highest growth rate. Joint development of two
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instabilities under conditions typical for experiments lg
o>k, Vi, results to that the growth rate of the slow
vortical perturbation is more for the most
homogeneous perturbation in the longitudinal
direction, as the finite dimensions of the lens allow.

At instability development the vortices are born as
follows. The non-uniform electric field E(r,t) (=-0
o(r,t)), arising as a result of the instability
development, leads to the nonuniform electron
dynamics with a velocity perturbation dV(r, t)~(e/m.w
<)[e.,0o] . As a result of a nonuniform 6V(r, t) the
electron bunching is performed which results in the
nonuniform distribution of the electron density
perturbation dne=ny(KOV)/(-lg,) . Last
automatically results in the vortical movement of the
electrons with a vorticity 0=e,rotV=(pe/0ke)dNe/Meo

3. SPATIAL STRUCTURE OF VORTICES

Let us describe the structure of a quick vortex in
the rest frame, rotating with the angular velocity w,=
Vw/tq. Let us consider a chain on 6 of vortices -
bunches and vortexes - holes of electrons. Neglecting
nonstationary and nonlineary- on - terms, we derive
the following equation

V=-(e/mcwuc)[e,,Er | H(e/mwye)[e,, @], )
describing the quasi-stationary dynamics of electrons
in the fields of the lens and the vortical perturbation.
From (1) we obtain the expression for radial and
azimuthal electron velocities

Vi=-(e/mu.)Je@, Ve=Vo,+(e/m.tn) @,

Vo, =-(€/MeWie) Ero=( 0 e/ 20t1e) (AN/Noe)T ()
Vg can be presented as a sum of the phase velocity of
perturbation, V,,, and velocity of azimuth electron
oscillations, Vg, in the field of perturbation, Ve=Vnt
OV . Because Vg=rdO/dt , we present d6/dt as

d6/dt=d8,/dt+wyn ,
where W=(An/Nee)(Wpe/20Wke) Ly , T, 1S the radius of
the vortical perturbation location. Then from (2) we
obtain
d01/dt=(wWpe/2)(An/nee)[ 1/0e(T)-

- 1/0ue(1y) [ H(e/tmee)0:Q , dr/dt=-(e/m.wyer)0e® (3)
At small diversions of r from r,, decomposing (1)
on Or=r-r, and integrating (3), we derive

(Or)*-2Wie(T, ) @/ TleAnry (0,0 ) LLv=const 4

The vortex boundary separates the trapped

electrons, forming the vortex and moving on closed
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trajectories and untrapped electrons, moving outside the
boundary of the vortex and oscillating in its field. For
vortex boundary we derive the following expression
from the condition Orl§ =0rq

Or=[2( Q@) whe(r)/ TEANT(O:Whe) B+ (Brer)’] (5)
Here &r is the radial width of the vortex - bunch of
electrons. From (5) the radial size of the vortex - hole of
electrons follows

O =2 [ uWke(1, )/ TleAnr, (0, (ke ) [y ] (6)

From the equation of electron motion and Poisson
equation it is possible to derive approximately the
expression for the vorticity a=erotV, which is
characteristic of the vortical motion of electrons

0=-2€E,o/rme (0 pe/ Wi )ONe/Neo

From here it follows that up to certain amplitude of
vortices the structure of electron trajectories in the field
of the chain on 0 of quick vortices in the system of rest,
rotated with Ww=Vpn/ry, is similar to the structure,
presented in [2].

For large amplitudes of quick vortices in the region
of electron bunches the contraflows are formed. The
vortex - hole rotates in the rest frame, rotating with a
frequency W=EV/ty, in the same direction as
unperturbed plasma. The vortex - bunch rotates in the
opposite direction of rotation of unperturbed plasma at &
n>An=ne-ne. It is seen the size of the vortex is
inversely proportional to [(An/Nee)((Wpe/Wer)d:Wke] and
is proportional to "% . That is the size of the vortex
essentially depends on the gradient of the magnetic
field. At low An/2n,. and /Wy already at small
perturbations of electron density the sizes of the vortex,
Ory , can reach 0ry=R/2, R is the plasma lens radius

(3) can be integrated without decomposition G(r)
on Or=r-r,. For this purpose we approximate Wue(r)= w
o(1+Ur/R?). Then, integrating (3), we derive

2@+TeAnr [ 1-0ho/2Wie(1v)-0he(r)/ 2 Wie(1v) J=const (7)
From the condition r}_q=1,+0r, and (7) we obtain the
expression, determining the boundary of the vortex -
hole of electrons,

[*~(ry+Orer)*1[1-00no/ 0ne(1)]- [1*-

-(1y+0rer) ] Wk /2R 201, ) +2(@+@,)/TeAn=const  (8)
From (8) and r[}4=r+0r, we derive the expression,
determining the radial width of the vortex - hole of
electrons,

QAR Wy (1, )/Tle An | o=

=(Ory-Orer) (21,40 +0re) [1, (Ot +Ore ) +(Or*+0re)/2] (9)

Let us consider the vortex with the small phase
velocity V. in comparison with the drift electron
velocity, V,n<<Vq,. The spatial structure of the electron
trajectories in its field for small amplitudes of the vortex
looks like that shown in Fig.1. It is determined by that
in all lens o has an identical sign, 0>0. In other words,
the radial electric field, created by the vortex is less,
than the electric field of the lens, E.<E.. Then in all
lens the azimuthal electron velocities have an identical
sign and there are not contraflows of electrons. The
slow vortex of a small amplitude does not have a
separatrix. For the description of the electron
trajectories we use (2). Using in them Vg=rd6/dt and
excluding 8, we obtain for boundary of the vortex r(8)
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=[r+H(@-9)2/TeAn] (10)
In the case of small amplitudes (10) becomes
Or=r-1=(@-@)/TeAnr, (11)

From (10) we derive the radial size of the slow
vortex

Or=rl g1 =[r%H4@/TeAn] -1, (12)
In the case of small amplitudes (12) becomes
Or=2@,/TeAnr; (13)

For the description of the slow vortex structure one

can also use the equation

dtQ)Hc/nc:O, dt:at+(VD|:|El)'VphD9 (14)
We obtain approximately from (14) the equation,
describing the slow vortex of the small amplitude

dr/dt=-[n,6ne/0:0e(1) ][ Or- VonTe+ Ve, Do) (1/(ne+0n)) ,
do/dt=V,
or
Or=r-1,=Whe(Iy) On/N,1,0,0ke(1y)

Because on r=r, , dn,(r=r,)=0, on it the electron moves
with Vg, without radial perturbations. At r>r, there is a
positive radial displacement, and at r<r, - negative
radial displacement of the electrons. The radial size of
the slow vortex is inversely proportional to the radial
gradient of the magnetic field.

In the case of large amplitudes, ons>An (or
E.>E.), in the region where the electron holes are
placed, the characteristic of the vortical motion O
accepts an opposite sign, 0<0. In other words, on the
axis, connecting the vortex - hole and vortex - bunch,
the inequality E.>E., is fulfilled, and there is an
azimuthal contraflow of electrons. Then in some
regions the electrons rotate in the direction, opposite
to their rotation in crossed fields of the lens. The slow
vortex is a dipole perturbation of the electron density,
disjointed on radius. At on>An the structure of the
slow vortex is similar to the structure of the Rossby
vortex.

Fig. 1.

4. SATURATION OF EXCITED
HOMOGENEOUS SLOW VORTICAL
TURBULENCE

For quick vortices the cause of the instability is the
gradient of the velocity 0;Vy,, therefore for
development of instability the nonadiabatic dynamics
of electrons is necessary. For slow vortices the reason
of the instability is the interaction of the drifting
electron stream with ions, therefore amplitude of the
saturation of the slow vortex is determined from the
condition of the ion trapping

V(ri: phs - (1 5 )
or from the condition of the electron trapping
Vtre:(veo'vphs) ( 1 6)
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and is determined by smaller of them. For the plasma
lens, close to the optimum plasma lens, the saturation is
determined by electron trapping. For the plasma lens,
far from the optimum plasma lens, the saturation is
determined by ion trapping. The slow homogeneous
turbulence is not separated into single vortices.

5. NONLINEAR DYNAMICS OF VORTICES

The development of instability in initially
homogeneous plasma lens causes that the vortices are
born pairs: if the vortex - bunch of electrons is
generated, the vortex - hole of electrons occurs near it.

Let us consider how the nonhomogeneity of electron
density effects on the behaviour of vortices. Finiteness
of time of the vortices symmetrization and also the
reflection of resonant electrons from vortices - bunches

Ar

result that the vortices are asymmetrical. Namely, on
opposite on O parties of vortices the small bunches and
holes are formed. It results in formation of
polarization azimuth electric fields Eg, directed along e
o. The formation of fields Eg causes the radial drift and
spatial separation of vortices (see fig.2). In other
words, the property of preference of motion of the
vortex - hole on the peripherals of the plasma column
and the vortex - bunch to its axis is realized. The
polarization electric fields in the vortex - hole and the
vortex - hole have opposite signs. Then the velocities
of radial drift of the vortex - hole and vortex - bunch
have opposite signs. Namely, the vortex - hole goes to
the region of a lower electron density, and the vortex -
bunch goes to the region of higher electron density).

D>~
Fig. 2| The opposite radial shift of the vortex - bunch of the ¥gstron density and the vortex - hole

The resonant electrons are reflected from the vortex-
bunch. Thus the distribution of the electron density
being asymmetrical on azimuth is formed. It results in
the radial motion of the vortex - bunch of electrons and
leads to simultaneous formation of spiral distribution of
the electron density. In the case of the azimuthally
symmetrical vortex its velocity of radial drift is equal to

V= (00 pe/ 20 (R%/Noe ) (dnoe/dr) Gy (17)
R, is the radius of the vortex. The width of the spiral is
equal to the radial width of the vortex in the case of its
high radial velocity. In the case of a low radial velocity
of the vortex the width of the spiral is less, than the
radial width of the vortex.

When two vortices - bunches of electrons begin to
concern each other, the electrons of each vortex, taking
place near to its boundary, are reflected from the next
vortex. Thus the asymmetry is formed on the azimuth
distribution of the electron density in the neighbourhood
of each vortex. It leads to occurrence of a relative
velocity of vortices.

r Viner=[0pe(O11e)/2001e] R (18)

The similar behaviour of electrons was observed in

experiments in the only electron plasma, in the

charged plasma of the lens [1,3] and in the plasma,

placed in crossed radial electrical and longitudinal
magnetic fields.
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HEJIMHEVHAS 3BOJIIOIIUSA BUXPEN B CWJIBHOTOYHOM JIEKTPOCTATUYECKOM
IJIASMEHHOM JIMH3E

A.A. I'onuapos, B.U. Macnos, H.H. Onuuienxo, B.JI. Cmomun, B.H. Tpemuakoe

IIpoBeeHO TEOPETUYECKOE UCCIEA0BAHUE IIPOCTPAHCTBEHHOM CTPYKTYPBl U HEJIMHEWHOM NMHAMUKH BUXPEH B
IUTa3MEHHBIX JTMH3aX A1 (POKYCHPOBKH OOJBIINX MOHHBIX ITyYKOB.

HEJIHIMHA EBOJIONISA BUXPIB Y MOTYKHOCTPYMOBIN EJTEKTPOCTATUYHINA
IJIA3MOBIH JITH3I

A.A. I'onuapos, B.I. Macnoe, .M. Onuwenxo, B.J1. Cmomin, B.H. Tpemwvaxos

[IpoBeneHo TeopeTHyYHE JOCIHIKEHHS MPOCTOPOBOI CTPYKTYpPH 1 HENiHIMHOI JMHAMIKM BUXPIB y IJIa3MOBHX

JiH3ax 1715 POKyCyBaHHS BEMKHX 10HHUX ITY4KiB.
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