RESEARCH OF TRANSMUTATION OF PRODUCTS OF NUCLEAR CYCLE AT THE ELECTRON ACCELERATOR

N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, V.L. Uvarov NSC KIPT, Kharkov, Ukraine; ndikiy@kipt.kharkov.ua

The analysis of the use of linear electron accelerators for transmutation of fission products and actinides from nuclear power plants is carried out. The results of irradiation of isotopes ⁹⁰Sr, ²⁴¹Am and ChNPP fuel containing materials with the neutron flow from the linac are described. The variant of the test stand for investigation of transmutation of fission products and actinides is proposed on the basis of the powerful linear electron accelerator.

PACS: 29.17.+w, 28.41Kw

INTRODUCTION

Research of waste management by the technologies and their practical implementation under optimum safety conditions continues to be active. Together with disposal in geological rocks a promising direction in solving the problems of the waste manipulation is the use of transmutation.

In this connection the new approaches to reducing the waste recycling are developed. As is known at low concentration of neutrons in the reactor the operating time of isotopes of the higher nuclear weight in the first approximation equal to [1]:

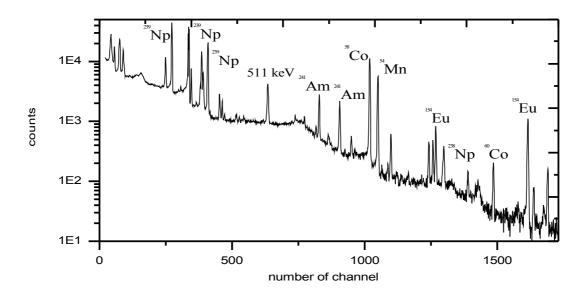
$$\begin{split} N_A &= ((\sigma_{A-1} \cdot N_o \cdot n \cdot v) / (n \cdot v (\sigma_{A-1} + \sigma_f) + \lambda_A)) \times \\ &\times (1 - exp(-n \cdot v (\sigma_{A-1} + \sigma_f) - \lambda_A) \cdot t) \end{split}$$

 N_o , N_A are the content of nuclei with atomic number A-1 and A, $\sigma_{A^{-1}}$, σ_f are the cross-section of neutron-capture and fission for nuclei with atomic numbers A-1 and A, respectively, n is concentration of neutrons, v is average neutron speed, λ_A is decay constant of nuclei with atomic number A.

Table 1. Equilibrium distribution of transuranium elements at high dozes in the reactor on thermal and fast neutrons (on the left) and the charge of neutrons Dj on division (Dj < 0 means the excess of own manufacture n, Dj > 0 means the necessity of an external source of neutrons)

Isotope	Thermal n	Fast n	Values D _i (neutron consumption per fission)							
-	spectrum	spectrum		1015	10 ¹⁴ n/cm ² ,	1016	10^{16} n/cm^2 ,			
²³⁷ Np	5.51	0.75	Isotope (or fuel type)	n/cm ²	n of PWR	n/cm ² ,	highly			
²³⁸ Pu	4.17	0.89		fast n		n of	thermalized			
²³⁹ Pu	23.03	66.75				PWR				
²⁴⁰ Pu	10.49	24.48	Th with extraction of	-0.39	-0.24	-0.24	-0.27			
²⁴¹ Am	0.54	0.97	²³⁸ Pa	0.20	0.20	1.00	1.14			
²⁴¹ Pu	9.48	2.98	Th without extraction of ²³⁸ Pa	-0.38	0.20	1.22	1.14			
²⁴² Cm	0.18	0.40	238U	-0.62	0.07	0.05	0.1			
^{242m} Am	0.02	0.07	²³⁸ Pu	-1.36	0.17	0.042	-0.13			
²⁴² Pu	3.89	1.8	²³⁹ Pu	-1.46	-0.67	-0.79	-1.07			
²⁴³ Am	8.11	0.44	²⁴⁰ Pu	-0.96	0.44	0.085	0.14			
²⁴³ Cm	0.02	0.03	²⁴¹ Pu	-1.24	-0.56	-0.91	-0.86			
²⁴⁴ Cm	17.85	0.28	²⁴² Pu	-0.44	1.76	1.10	1.12			
²⁴⁵ Cm	1.27	0.07	²³⁷ Np	-0.59	1.12	0.53	-0.463			
²⁴⁶ Cm	11.71	0.03	²⁴¹ Am	-0.62	1.12	0.076	-0.54			
²⁴⁷ Cm	0.75	2.E-3	²⁴³ Am	-0.60	0.82	0.16	0.21			
²⁴⁸ Cm	2.77	6.E-4	²⁴⁴ Cm	-1.39	-0.15	-0.53	-0.48			
²⁴⁹ Bk	0.05	1.E-5	²⁴⁵ Cm	-2.51	-1.48	-1.46	-1.37			
²⁵⁰ Cf	0.03	7.E-6	D _{TRU} (discharge from	-1.17	-0.05	-0.35	-0.54			
²⁵¹ Cf	0.02	9.E-7	a PWR)							
²⁵² Cf	0.08	4.E-8	D _{TRU+Pu+Np} (discharge	-0.70	1.1	0.3	0.4			
Total	100.0	100.0	from a PWR)							

As is seen, during the reactor operating time the content of elements with a large A decreases with neutron concentration increasing. Therefore the increase of neutron flow density in the reactor results in the change of the actinide content in the reactor.


The approach ADS (Accelerator Driven Systems) has many supporters in the world. The main advantage of ADS is the significant decrease of fission products and TRU, and also burning out of new transuraniums. The second feature of ADS is repeated recirculation of

fuel or waste. It allows one to essentially reduce the danger of the spent fuel from usual nuclear power plants after updating with the help of ADS (tabl.1 (on the left)).

From table 1 (on the right) it can be seen that for fast neutrons the flow 10¹⁵ n/s·sm² practically completely results in burning out of transuraniums. Their radiotoxicity is prevalent. From table 2 it is seen that asymptotic spectra lead to isotopes with A>238 with the result being more acceptable by toxicity. Therefore, third advantage of ADS systems is the fast neutron spectrum. As is seen from the given tables during operating time the low level of transuranium elements and fission products in reactors with a flow 10¹⁵ n/s sm² on fast neutrons is attained. The projects of use of

powerful linear proton accelerators [2] and deuteron accelerators [3] are known. The use of linear electron accelerators for transmutation is promising [4].

The plutonium isotopes contribute for about 90% to the radiotoxic inventory, the rest 10% is contributed by americium and curium. In the high-level waste arising from reprocessing activities, during which 99.88% of the plutonium and uranium are recovered, americium and curium are the main contributors. To reach a considerable reduction of the radiotoxicity, at least 90% of the americium is need to be fissioned. This can be achieved by multiple recycling in fast neutron flux or once-via transmutation in high-thermal or epidermal neutron flux.

Spectrum of gamma radiation from the sample ²⁴¹Am after irradiation with neutrons for one year

RESULTS AND DISCUSSION

Samples of ²⁴¹Am, ⁹⁰Sr and FCM 4 block ChNPP were investigated. The irradiation of samples was carried out by neutrons from the aluminium-silicon converter during year [5]. The irradiation time was 2. 10^7 s. Through the target $4 \cdot 10^{14}$ neutrons penetrated. The estimated neutron fluence was 5·10¹⁸ neutrons/cm². The instant flow of neutrons is about 1013 n/s cm2. In the sample 90Sr the activity 89Sr caused by the nuclear reaction 90Sr(n,2n)89Sr was detected. The low yield of radiation with an energy of 1210 keV did not allowed to measure the content of ${}^{91}\text{Sr} \rightarrow {}^{91}\text{Y}$ (reaction ${}^{90}\text{Sr}(n,\gamma){}^{91}\text{Sr}$, $I_{res} = 0.3$ b). The spectrum of gamma radiation from the sample ²⁴¹Am is given in Fig. In the sample ²⁴¹Am the activity of isotopes ^{238, 239}Np, ²³³Pa, ^{241, 243}Am is detected. The radiation of fission products of ¹⁰³Ru, ¹⁵⁴Eu, ⁹⁵Nb and isotopes ^{57,60}Co, ⁵⁹Fe, ⁵¹Cr caused by the activity of a material of the container is detected. Besides the traces

of isotopes of americium, the isotopes of europium-154 were observed.

The feature of irradiation of samples from FCM 4 block ChNPP during year is the absence of fission products of ¹⁰³Ru, ⁹⁵Nb.

The powerful linear electron accelerator (P=20 kw in the beam) can be the tool for the study of transmutation of fission products and actinides. 2 10^{13} n/s from the tantalum converter when using the water moderator will have a maximum of distribution of a neutron flow nv at a distance from the centre of a beam of about 7.6 cm. With the use of the moderator with low cross-section of capture (D₂O) the fast neutron flow ($\approx 1...5$ eV) in a maximum will have 10^{15} n/s·cm², that allows one to solve the majority of research tasks on the management with the spent fuel of nuclear power plants.

Table 2. Radiotoxicity of isotopes (CD=Cancer Dose Hazard)

	Toxicity	Half-life,	Toxicity		Toxicity	Half-life,	Toxicity factor
Isotope	factor	years	factor CD/g	Isotope	factor CD/Ci	years	CD/g
	CD/Ci			²⁴² Cm	6.9	0.45	22900
²¹⁰ Pb	455	22.3	34800	²⁴³ Cm	196.9	29.1	9960
²²³ Ra	15.6	0.03	799000	²⁴⁴ Cm	163	18.1	13200
²²⁶ Ra	36.3	$1.6 \cdot 10^3$	35.9	²⁴⁵ Cm	284	8500	48.8
²²⁷ Ac	1185	21.8	85800	²⁴⁶ Cm	284	4800	86.7
²²⁹ Th	127.3	$7.3 \cdot 10^3$	27.2		Shot-lived	Fission	Products
²³⁰ Th	19.1	$7.54 \cdot 10^4$	0.394	⁹⁰ Sr	16.7	29.1	2280
²³¹ Pa	372	$3.28 \cdot 10^4$	0.176	⁹⁰ Y	0.6	0.0073	326000
^{2 34} U	7.59	2.46·10 ⁵	0.047	¹³⁷ Cs	5.77	30.2	499
²³⁵ U	7.23	$7.04 \cdot 10^8$	$1.56 \cdot 10^{-5}$		Long-lived	Fission	Products
²³⁶ U	7.5	$2.34 \cdot 10^7$	$4.85 \cdot 10^{-4}$	⁹⁹ Tc	0.17	2.13·10 ⁵	$2.28 \cdot 10^{-3}$
²³⁸ U	6.97	4.47·10 ⁹	$2.34 \cdot 10^{-6}$	¹²⁹ I	64.8	$1.57 \cdot 10^7$	0.0115
²³⁷ Np	197.2	$2.14 \cdot 10^6$	0.139	⁹³ Zr	0.095	$1.5 \cdot 10^6$	$2.44 \cdot 10^{-4}$
²³⁸ Pu	246.1	87.7	4220	¹³⁵ Cs	0.84	$2.3 \cdot 10^6$	9.68·10 ⁻⁴
²³⁹ Pu	267.5	$2.41 \cdot 10^4$	16.6	¹⁴ C	0.2	$5.93 \cdot 10^3$	0.892
²⁴⁰ Pu	267.5	$6.56 \cdot 10^3$	60.8	⁵⁹ Ni	0.08	$7.6 \cdot 10^4$	$6.38 \cdot 10^{-3}$
²⁴² Pu	267.5	$3.75 \cdot 10^{5}$	1.65	⁶³ Ni	0.03	100	1.7
²⁴¹ Am	272.9	433	936	¹²⁶ Sn	1.7	1.105	0.0483
^{242m} Am	267.5	141	28000				
²⁴³ Am	272.9	7370	54.5				

REFERENCES

- Nuclear astrophysics. Cambridge: Cambridge University Press, 1982, p.519.
- 2. C.Rubbia Status of the Energy Amplifier Concept Proc. // Of the Int. Conf. On Accelerator Driven Technology and Aplication, Kalmar, Sweden, 1996, p.35.
- 3. R.Soule et al. The MUSE experiments for sub-critical neutronics validation // 6th Int. Exchange Meeting on
- P&T, Madrid, Spain, 11-13 December 2000, OECD Energy Agency, Paris, France, 2001.
- M.A.Reda, F.Harmon, I.D.Pocatello, S.B.Sedineni A Photo-neutron Source for a Sub-Critical Nuclear Reactor Programs // Proc. Of University of Nevada, Las Vegas N.V. APS (Accelerators Driven Sub-Critical Systems), p. 101-105.
- 5. R.J.M.Konings, R.Conrad, G.Dassel, B.J.Pijlgroms et al The EFTTRA-T4 experiment on ²⁴¹Am transmutation // *Jour. Nucl. Mat.* 2000, v. 282, p. 159-170.

ИССЛЕДОВАНИЕ ТРАНСМУТАЦИИ ПРОДУКТОВ ЯДЕРНОГО ЦИКЛА НА УСКОРИТЕЛЕ ЭЛЕКТРОНОВ

Н.П. Дикий, А.Н. Довбня, Ю.В. Ляшко, В.Л. Уваров

Проведен анализ использования линейных ускорителей электронов для трансмутации продуктов деления и актиноидов атомных электростанций. Описаны результаты облучения потоком нейтронов на ЛУЭ изотопов 90 Sr, 241 Am и топливосодержащих масс ЧАЭС. Предложен вариант стенда для исследования трансмутации продуктов деления и актиноидов на базе мощного линейного ускорителя электронов.

ДОСЛІДЖЕННЯ ТРАНСМУТАЦІЇ ПРОДУКТІВ ЯДЕРНОГО ЦИКЛУ НА ПРИСКОРЮВАЧІ ЕЛЕКТРОНІВ

М.П. Дикий, А.М. Довбня, Ю.В. Ляшко, В.Л. Уваров

Проведено аналіз використання лінійних прискорювачів електронів для трансмутації продуктів ділення й актиноїдів атомних електростанцій. Описано результати опромінення потоком нейтронів на ЛПЕ ізотопів ⁹⁰Sr, ²⁴¹Am і паливовміщуючих мас ЧАЕС. Запропоновано варіант стенда для дослідження трансмутації продуктів ділення й актиноїдів на базі потужного лінійного прискорювача електронів.