DISCRETE OPTIMIZATION PROBLEM
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In the paper a mathematical model is considered that allows simultaneous optimization of a program motion and
an ensemble of perturbed motions. Analytical expressions for functional variations are suggested that help construct-
ing various directed methods of optimization. Given mathematical apparatus can be effectively used in the optimiza-
tion of the dynamics of charged particles in linear accelerators.
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1. INTRODUCTION

Discrete problems of control are important in the
theory and practice of optimal control, because many
problems are described exactly by differential equa-
tions. In practice the information on the stage of the pro-
cess comes in discrete moments of time and the control
of the process also comes step by step.

Problems of control in discrete systems received at-
tention of many researches. Two approaches to the
problem can be found. The first approach is based on
the Bellman principle of optimality. The second one is
the variational approach which links to the apparatus
principle of L.S. Pontryagin.

Conventional formulations of optimal control prob-
lems are quite known and they had been studied quite
well [1]. These problems can be considered as problems
of control of particular trajectories. At the same time, in
works of D.A.Ovsyannikov such methods of optimal
control and optimization of ensemble of trajectories or
beam trajectories have been developed [2].

Let us note that the problems of control of ensemble
of trajectories naturally emerge under the study of opti-
mization of charged particle beam dynamics in acceler-
ating and focusing structures.

2. MATHEMATICAL MODEL

Let particle dynamics be given by a difference equa-
tion system:
x(k+1)= f(k,x,u)=

0f; (k, x(k), u(k)),k = 0,1

3, ey, x(h - 1), x(k - 2),u(k)),k = 2,...,N - 1 M
y(k+1)= F(k,x,y,u)=

0F (k, x(k), y(k),u(k)),k = 0,1

HFZ (kyx(k) ey x(k = 2), y (k). (K = 2),u(k)),
gk=2,..,N-1.

Here x(k) is the # - dimensional phase vector defining

(@)

the program motion, y(k) is the 7 - dimensional phase
vector defining the perturbed motion, u(k) is the 7 -

dimensional control vector; f(k,x,u) is the 7~ dimen-
sional vector function defining the process dynamics at
each step. For all k[0 {0,1,---,N } the vector function
S (k,x,u) is assumed to be definite and continuous on
Q . xU(k) in all its arguments (x,%) along with partial
derivatives  with  respect to

these  variables.
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F(k,x(k), y(k),u(k))
function, for all [ {0913' ~~,N] it is assumed to be defi-

is the m- dimensional vector

nite and continuous on & * @ , X U(k) in all its argu-

ments (x,y,u) along with partial derivatives with re-

spect to these variables and second partial derivatives
0:F, 0°F,  01°F
ayiayj ’ 0y,0x,, ’ 0y0uy ’

m=12,....n; k=12,...,r.

Here Q , is the region in R”, Q y is the region in R™,

U(k), k= 0,1,...,N - 1 is the compact set in R”. In this

case we consider the Jacobian

li=

|0F (K, x(k), (k) u(k))|
| 0y(k)
to be nonzero for all changes of &, x(k), y(k), u(k).
The given type of system (1)-(2) is determined by
the kind of discrete equations which can be described as

the motion of charged particles in accelerator with drift
tubes [2]. System (1)-(2) can be reduced to

x(k+ 1) = f(k,x(k),u(k)),
Ykt 1)= F(k,x(k), y(k),u(k)).
However, this is not useful as this leads to the rise of

steps of phase vectors and the loss of physical sense of
beam trajectories.

We assume, that x(0) = x, is fixed and the initial
state of the system (2) is described by the set M- a
compact set of nonzero measure in R™. Let us call the
sequence of vectors {u(0),u(l),...,u(N - 1} as the con-
trol of the system (1)-(2) and denote it by ¢ for brevity.
Its associated sequence of vectors {x(0),x(1),...,x(N)}
is called the trajectory of program motion and is de-
noted by x = x(xo,u) . Denote by x(k)= x(k,xq,u) the
phase state of the program particle at & th step. Simil-
arly, let us call the sequence of vectors
{»(0), y(1),...,»(N)} as the trajectory of perturbed mo-
tion and denote it by = y(x,y0,4). Denote by
y(k) = y(k,x,yq,u) the phase state of the particle at the
k -th step.

The set of trajectories V(X, qo,u) corresponding to

Sy = Sk, x(k), y(k), u(k)) =

the initial state X, the control ¥ and different states

Yo U My will be referred to as a bundle of trajectories
or simply the bundle. The phase state of beam at the k
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th step is also called as the cross section of the bundle of
trajectories and is denoted by My, , i.e.

Mk,u = {y(k) y(k) = J’(k,J’o,xau)a)’o 0 MO}s

the controls satisfying conditions
u(k)0 U(k), k=0L...,N-1 are admissible.
We introduce the following functionals:
N-1
I (u) = Z cr&r(xp) t engn(xy), (3)
3|
N-1
L= ) [$eGereuddet [gondy 4
=1 Mk,u MN,u
I(w) = 1) (u)+ 1 (u) &)

characterizing the phase state of the bundle of trajecto-
ries and the control parameters. Here Xx; = x(k),

Vi = y(k)U M, ,, the function ¢, is defined and con-

tinuous on @ X Q , ¥ U(k) for all k in all its argu-
ments together with partial derivatives with respect to
XY and u; g, is continuously differentiable function
defined in Q , for all &k ; & is a continuously differenti-
able function defined in @ v, Cy is constant for all & .

Functional (3) characterizes the dynamics of the pro-
gram motion, functional (4) characterizes the dynamics
of the ensemble of perturbed motions, while functional
(5) allows simultaneous estimation of the program and
perturbed motions as well as their simultaneous optim-
ization. We will consider the functional minimization
problem for all admissible controls.

3. VARIATION OF FUNCTIONAL

Let us consider the admissible control # and u .
Their associated trajectories are denoted by x(xq,u)
and X(xo,u), and associated trajectories of perturbed
motions are denoted by

)’(X»J’Os”) u )7(;,)/0,17), (6)
The difference A u(k) = u(k)- u(k) is called the varia-
tional of the control u at the kth step, difference
Ax(k)= Dx(k,x;) = X(k,xo,u) - x(k,xy,u) is called
the trajectory increment X(Xo,#) at the k th step, and
the difference
By(k) = by(k,y) = Y(X,p0,i) = y(x,y0,u)
the trajectory increment of perturbed motion at the & th
step. With Au and 4x,4) referred to as the variation
of control # and the increments of trajectories of
x(xg,u) and Y(x,yg,u) respectively. It is evident

is called

that, by the common properties of continuity ||A XH -0
as [Auf- 0, and [Ay|- O as [Au|- O uniformly in

yol My, I x" oy "A x(k)" here

2 x (k)| = ,/(Ax(k),Ax(k)). The norm 4y and norm

Au are defined in a similar manner.

Let us denote variations of trajectories of the system
(1)—-(2)as 0x(k), 8y(k) at admissible variation of con-
trol Au and given U .
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Now we will write down for system (1) — (2) ac-
cording equations in variations:

_ 0/ (k) 0f (k) )
Ox(k+1)= ) dx(k)+ » (k)Au(k), k=0,1
0f (k) 1/ (k)
Ox(k+1)= " (k)5 x(k)+ Txth- )(5 x(k-1)+
dx(k - 2) 0 u(k)
k=2,...,N-1, @)
IF (k) I F (k) 0 F (k)
Oy(k+1)= 3 (k)5 x(k)+ k) Oy(k)t » (k)A u(k),
k=01,
0F(k) VF(k) ) 1 F(k)
Iy(k+1):= ) dx(k)+ k- 1)6x(k )+ 2 )6 x(k-2)
1F (k) IF (k) ) IF(k)
4 0 dy(k)+ - 1)(5y(k )+ - )(5 y(k-2)+
0 F (k) i )
—au(k) Du(k), k=2,..N-1 ®)

and [Ay - 8y|| are infinitesimals

of higher order than ||A M” .

Let us consider the mapping of the set M, into the
set M ; that is defined by the trajectories (6) emanat-
ing from the same points of the set M. Denote it by

Vi = Yi) . ©
Let us write down the Jacobian of this transformation

(2]:

d
de tEaik E- L+ div b y(k,y )+ 0(||Ay(k yk)")
k

where div,Ay(k, y)) = Z My,(k—y(k))

0y; (k)
Furthermore, by the above assumptions,
ldiv, b y(k. ye) - div,By(k, )| = ol|bu]) s uniform
with respectto £ = 1,2,...,N and yo U M.

Similarly [2], it is easy to show, that there take place
following relationships:
div,0y(k+ 1) = div,0y(k) +

0Jk aJk a‘]k E
Sk dx(k Du(k)g,
%6(@ ()+ 0x(k) ()+ du(k) 0
k=01,
a0 oJ
divyéy(k+ 1= divyéy(k)+ Jy Ea )
aJ,
B D g D e
0J, _ L - M"
. P l)(jx(k )+ PR ox(k- 2)+ (k)Au(k)E,
k=2,...,N-1. (10)

Taking into account equations (7), (8), (10) and

initial  values of  variations9x(0)= 0,3y(0) = 0,



div,0y(0) = 0, and using the methods of investigation
of functionals of types (3)-(5), presented at the works
[1-2, 4] variations of functionals (3)-(5) (at admissible
variation of control 4 %) can be represented in the fol-
lowing form:

N-1
_ T 0f (k, x(k), u(k))
Iy = ;OE (k+ 1)—6u(k) bu(k), (11
where ¢ (k) is the following auxiliary function:
T © 5T 0/ () 0g; (x;)
()= ,-Zkf Do o)
_ON-Lnpu k=N-1,N-2
here "D 2 mpu k=12, N-3
k=12,...,N-1,

. . . T - Ign(xy)
with the terminal condition ¢  (N)= cy —0x(N) ,
$(k)O n-vector;
5<% I EJ PTGk 1)0F(k) s gy Tk LR,

: ;(JMM i du(k) ~F du(k)

0Jy , 04 (x(k), y(k),u(k))

q(k + 1)a (k)+ Julh) Edykﬂ u(k), (12)

here q(k), p(k),y (k) are the following auxiliary func-
tions:

q(k) = Jrqk+ 1)+ ¢ 4,

m -1
T
p (k)= Jq(i+
zz:k jﬂk 0 (k)
Zm |'| J,p7 s nED 8 ®). yE)ulk)
Tk ik 9 y(k) dy(k)
m i-1
HOE J (it
Zk D|1-|k )
| f(l)%
TP WRG
|_/-':|k " |-| i} (k)
04 4 (x(k), y(k),u(k))
dy(k) '
0k+2, k=1...,.N-3
here m = DN- L k:N-2N-1°

i-1
if k> i- 1, then let be |-| J;p= 1
Jk

with the terminal conditions:
0
T (N)= g(yN)
Ip(N)
here V(k)is the 7 -vector, P(k) isthe m -vector, q(k)
is the scalar.
The variation of functional (5) has the following form:
01=01,+01,. (13)
The relationships (11), (12) can be written in the follow-
ing form

g(N)=g(yy), YV(N)=0,

01, = gradl|Au, 01, = gradl,Au,
. 1/(0) If(N- 1)
where grady = T e an T

and components of gradl, will be integrals on M, of

corresponding expressions in brackets in formula (12).
Obviously, the sum of these gradients will be the gradi-
ent of functional (5).

The representation of functional variations (11)-(13)
allows constructing a variety of directional methods of
optimization for functionals (3)-(5). In particular, we
can use the gradient methods of optimization.

4. CONCLUSION

In this paper we considered the mutual optimization
of a particular trajectory and the ensemble of trajecto-
ries. Analytical representations for variations of exam-
ined functionals were found. Note that we often find ne-
cessity of joint optimization in solving various opti-
mization problems, in particular, in the problems of
charged particle beam dynamic optimization in linear
accelerators [3].
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OINNTUMUBALIUSA B JUCKPETHBIX CUCTEMAX IIPU MUHUMAKCHOM KPUTEPUU
EJI. Komuna

Hpez[naraeTcx MaTeéMaTUu4eCKas MOAECJIb ONITUMU3AalIUU IIPOrpaMMHOI'0 NBUKEHUS (Z[BI/I)KCHI/ISI CI/IHXpOHHOfI ‘{aCTI/IIH)I) " aH-
caMOI1st BO3MYIIIEHHBIX ﬂBMX(eHHﬁ. paCCMaT‘pHBa}OTCSI MHUHHUMAaKCHBIC (byHKLlHOHaJ'lbI, NO3BOJIAIONINE OLEHUBATH JUHAMUKY 4a-

CTHII 110 “HAaUXyAIIUM” YacTULAM.

OITUMIBALIS B IMCKPETHUX CUCTEMAX IIPU MIHIMAKCHOMY KPUTEPII
€.JI. Komuna
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3anponoHoOBaHa MaTeMaTH4Ha MOJIEIb ONTHMI3allii IporpaMHOro pyxy (pyXy CHHXpOHHOI YacTKH) i aHcaMOJIl0 00ypeHnx
pyxiB. Po3risaatoThest MiHiMakcHi QyHKI[IOHANH, 10 JO3BOJISIOTH OL[IHIOBAaTH JUHAMIKY YaCTOK IO “HAWUTipIIMM’ 4acTKax.
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