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In the paper a mathematical model is considered that allows simultaneous optimization of a program motion and 

an ensemble of perturbed motions. Analytical expressions for functional variations are suggested that help construct-
ing various directed methods of optimization. Given mathematical apparatus can be effectively used in the optimiza-
tion of the dynamics of charged particles in linear accelerators.

PACS: 517.97:621.384.6

1. INTRODUCTION
Discrete  problems  of  control  are  important  in  the 

theory and practice  of  optimal control,  because many 
problems  are  described  exactly  by  differential  equa-
tions. In practice the information on the stage of the pro-
cess comes in discrete moments of time and the control 
of the process also comes step by step.

Problems of control in discrete systems received at-
tention  of  many  researches.  Two  approaches  to  the 
problem can be found. The first approach is based on 
the Bellman principle of optimality. The second one is 
the  variational  approach  which  links  to  the  apparatus 
principle of L.S. Pontryagin. 

Conventional formulations of optimal control prob-
lems are quite known and they had been studied quite 
well [1]. These problems can be considered as problems 
of control of particular trajectories. At the same time, in 
works  of  D.A.Ovsyannikov  such  methods  of  optimal 
control and optimization of  ensemble of trajectories or 
beam trajectories have been developed [2]. 

Let us note that the problems of control of ensemble 
of trajectories naturally emerge under the study of opti-
mization of charged particle beam dynamics in acceler-
ating and focusing structures.

2. MATHEMATICAL MODEL
Let particle dynamics be given by a difference equa-

tion system:
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Here )(kx  is the −n dimensional phase vector defining 
the program motion, )(ky  is the −m dimensional phase 
vector defining the perturbed motion,  )(ku  is the  −r  
dimensional control vector; ),,( uxkf  is the −n dimen-
sional vector function defining the process dynamics at 
each  step. For  all  { }Nk ,,1,0 ∈  the  vector  function 

),,( uxkf  is assumed to be definite and continuous on 
)(kUx ×Ω  in all its arguments ),( ux  along with partial 

derivatives  with  respect  to  these  variables. 

))(),(),(,( kukykxkF  is  the  −m dimensional  vector 
function, for all { }Nk ,,1,0 ∈  it is assumed to be defi-
nite and continuous on )(kUyx ×Ω×Ω  in all its argu-
ments ),,( uyx  along with partial  derivatives  with re-
spect to these variables and second partial derivatives 
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Here xΩ  is the region in nR , yΩ  is the region in mR , 

1,,1,0),( −= NkkU   is the compact set in .rR  In this 
case we consider the Jacobian 
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to be nonzero for all changes of ).(),(),(, kukykxk
The given type of system (1)-(2) is determined by 

the kind of discrete equations which can be described as 
the motion of charged particles in accelerator with drift 
tubes [2]. System (1)-(2) can be reduced to
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However, this is not useful as this leads to the rise of 
steps of phase vectors and the loss of physical sense of 
beam trajectories.

We assume, that  0)0( xx =  is fixed and the  initial 
state of the system (2) is described by  the  set  −0M a 
compact set of nonzero measure in mR . Let us call the 
sequence of vectors { })1(,),1(),0( −Nuuu   as the con-
trol of the system (1)-(2) and denote it by u  for brevity. 
Its associated sequence of vectors  { })(,),1(),0( Nxxx   
is  called the  trajectory of  program motion and is  de-
noted by ),( 0 uxxx = . Denote by ),,()( 0 uxkxkx =  the 
phase state of the program particle at  k th step.  Simil-
arly,  let  us  call  the  sequence  of  vectors 
{ })(,),1(),0( Nyyy   as the trajectory of perturbed mo-
tion  and  denote  it  by  ),,( 0 uyxyy = .  Denote  by 

),,,()( 0 uyxkyky =  the phase state of the particle at the
k -th step.

The set of trajectories  ),,( 0 uyxy  corresponding to 
the initial state  0x ,  the control  u  and different states 

00 My ∈  will be referred to as a bundle of trajectories 
or simply the bundle. The phase state of beam at the k
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th step is also called as the cross section of the bundle of 
trajectories and is denoted by ukM , , i.e.

{ } ,),,,,()(:)( 000, MyuxykykykyM uk ∈==
the  controls  satisfying  conditions 

1,,1,0),()( −=∈ NkkUku   are admissible.
We introduce the following functionals:
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characterizing the phase state of the bundle of trajecto-
ries  and  the  control  parameters.  Here  ),(kxxk =  

,)( ,ukk Mkyy ∈=  the function kϕ  is defined and con-

tinuous on )(kUyx ×Ω×Ω  for  all  k  in  all  its  argu-
ments together with partial derivatives with respect to 

yx,  and u ; kg  is  continuously differentiable function 
defined in xΩ for all k ; g  is a continuously differenti-
able function defined in yΩ , kc  is constant for all k .

Functional (3) characterizes the dynamics of the pro-
gram motion, functional (4) characterizes the dynamics 
of the ensemble of perturbed motions, while functional 
(5) allows simultaneous estimation of the program and 
perturbed motions as well as their simultaneous optim-
ization.  We will  consider  the  functional  minimization 
problem for all admissible controls. 

3. VARIATION OF FUNCTIONAL

Let  us  consider  the admissible  control  u  and  u~ . 
Their associated trajectories are denoted by  ),( 0 uxx  
and  )~,(~

0 uxx ,  and associated trajectories of perturbed 
motions are denoted by 

),,( 0 uyxy  и )~,,~(~
0 uyxy .                      (6)

The difference )()(~)( kukuku −=∆  is called the varia-
tional  of  the  control  u  at  the  k th  step,  difference 

),,()~,,(~),()( 00 uxkxuxkxxkxkx k −=∆=∆  is  called 
the trajectory increment  ),( 0 uxx  at the  k th step, and 
the difference

),,()~,,~(~),()( 00 uyxyuyxyykyky k −=∆=∆  is  called 
the trajectory increment of perturbed motion at the k th 
step. With  u∆  and  yx ∆∆ ,  referred to as the variation 
of  control  u  and  the  increments  of  trajectories  of 

),( 0 uxx  and  ),,( 0 uyxy  respectively.  It  is  evident 
that, by the common properties of continuity 0→∆ x  

as  0→∆ u , and  0→∆ y  as  0→∆ u  uniformly in 

00 My ∈ ,  )(max
1,,1,0

kxx
Nk

∆=∆
−=  ,  here 

))(),(()( kxkxkx ∆∆=∆ .  The  norm  y∆  and  norm 
u∆  are defined in a similar manner.

Let us denote variations of trajectories of the system 
(1) − (2) as )(),( kykx δδ  at admissible variation of con-
trol u∆  and given u . 

Now we will write down for system (1)  − (2) ac-
cording equations in variations:
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In this case, xx δ−∆  and yy δ−∆  are infinitesimals 

of higher order than u∆ .

Let us consider the mapping of the set ukM ,  into the 
set ukM ~,  that is defined by the trajectories (6) emanat-
ing from the same points of the set 0M . Denote it by

)(~~
kk yyy = .                                 (9)

Let us write down the Jacobian of this transformation 
[2]: 
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Furthermore,  by  the  above  assumptions, 
( )uoykydivykydiv kyky ∆=δ−∆ ),(),(  is  uniform 

with respect to Nk ,,2,1 =  and 00 My ∈ .
Similarly  [2],  it  is easy to show, that there take place 
following relationships:
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Taking into account equations (7),  (8),  (10)  and 

initial  values  of  variations ,0)0(,0)0( =δ=δ yx  
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,0)0( =ydivyδ  and using the methods of investigation 
of functionals of types (3)-(5), presented at the works 
[1-2, 4] variations of functionals (3)-(5) (at admissible 
variation of control  u∆ ) can be represented in the fol-
lowing form:
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where )(kξ is the following auxiliary function: 

,
)(

)(
)(
)()1()(

kx
xg

c
kx
ifik kk

k

m

ki

TT

∂
∂

+
∂
∂+= ∑

=

ξξ

here  
3,,2,1
2,1

,2
,1

−=
−−=





+
−

=
Nkпри
NNkпри

k
N

m


,1,,2,1 −= Nk 

with  the  terminal  condition  ,
)(

)(
)(

Nx
xgcN NN

N
T

∂
∂

=ξ

)(kξ  n -vector;
 

+
∂
∂++


∂
∂+= ∑ ∫

−

= )(
)()1(

)(
)()1(

1

0
2

,
ku
kfkJ

ku
kFkpJI T

k

N

k M

T
j

uk

γδ

),(
)(

))(),(),((
)(

)1( kudy
ku

kukykx
ku

Jkq k
kk ∆


∂

∂+
∂

∂+ ϕ
   (12)

here  )(),(),( kkpkq γ  are the following auxiliary func-
tions:
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here )(kγ is the n -vector, )(kp  is the m -vector, )(kq  
is the scalar.
The variation of functional (5) has the following form:

.21 III δδδ +=                          (13)
The relationships (11), (12) can be written in the follow-
ing form

,11 ugradII ∆=δ ,22 ugradII ∆=δ
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and components of 2gradI  will be integrals on ukM ,  of 
corresponding expressions in brackets in formula (12). 
Obviously, the sum of these gradients will be the gradi-
ent of functional (5). 

The representation of functional variations (11)-(13) 
allows constructing a variety of directional methods of 
optimization  for  functionals  (3)-(5).  In  particular,  we 
can use the gradient methods of optimization.

4. CONCLUSION
In this paper we considered the mutual optimization 

of a particular trajectory and the ensemble of trajecto-
ries. Analytical representations for variations of exam-
ined functionals were found. Note that we often find ne-
cessity  of  joint  optimization  in  solving  various  opti-
mization  problems,  in  particular,  in  the  problems  of 
charged particle  beam dynamic  optimization in  linear 
accelerators [3].
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ОПТИМИЗАЦИЯ В ДИСКРЕТНЫХ СИСТЕМАХ ПРИ МИНИМАКСНОМ КРИТЕРИИ 
Е.Д. Котина

Предлагается математическая модель оптимизации программного движения (движения синхронной частицы) и ан-
самбля возмущенных движений. Рассматриваются минимаксные функционалы, позволяющие оценивать динамику ча-
стиц по “наихудшим” частицам. 

ОПТИМІЗАЦІЯ В ДИСКРЕТНИХ СИСТЕМАХ ПРИ МІНІМАКСНОМУ КРИТЕРІЇ 
Є.Д. Котина
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Запропонована математична модель оптимізації програмного руху (руху синхронної частки) і ансамблю обурених 
рухів. Розглядаються мінімаксні функціонали, що дозволяють оцінювати динаміку часток по “найгіршим” частках.
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