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The self-consistent formation, observed in experiments, of the solitary barrier for plasma electrons and ions has been 
analytically described.
PACS: 52.25.-b

THERMAL BARRIER FORMATION FOR 
PLASMA ELECTRONS IN ECR POINT

In [1] the formation of the thermal barrier for plasma 
particles was observed near the point of electron cyclotron 
resonance (ECR) in inhomogeneous magnetic field. In this 
paper two mechanisms of similar thermal electric barriers 
formation for electrons and ions of the plasma and plasma 
flow in ECR points on ends of the magnetized cylindrical 
trap are described (see fig. 1). 

Fig. 1. Scheme of the thermal electrical barriers 
formation for plasma electrons and ions in ECR points on 

ends of the magnetized cylindrical trap

We consider the case of inhomogeneous magnetic field. 
Namely the magnetic field is minimum in the center of the 
cylindrical trap and it grows to the ends of the cylindrical 
trap. Near ECR point the transversal electron velocity V⊥o 

is increased. At electron motion from the system they are 
reflected  from  the  magnetic  barrier  back.  Further  the 
electrons move inside the system. In the inhomogeneous 
magnetic  field  the  electron  transversal  velocity  V⊥(z) 
decreases  V⊥(z)=V⊥o(H(z)/Ho)1/2,  but  the  electron 
longitudinal  velocity  V||(z)  increases  V||(z)=V⊥o(1-
H(z)/Ho)1/2 . It results in average electron velocity. Growth 
of electron velocity leads to that electrons in the area, in 
which they are penetrated, form noncompensated negative 
charge  δne.  According  to  Poisson  equation  it  is  the 
perturbation  of  the  dip  of  the  electric  potential,  from 
which the plasma electrons are reflected.  Growth of the 
electron longitudinal velocity with respect to the ions near 
ECR point provides nonequilibrium state. The reflection 
of the electrons with nonequilibrium distribution function 
from the dip of the electric potential leads to growth of the 
dip’s amplitude. So these current-carrying electrons excite 

the  electric  potential  dip  with  amplitude  ϕo on  an  ion 
mode with velocity Vc,  close to zero,  and are  reflected 
from  it.  From  Vlasov  equation  for  electrons  and 
hydrodynamic equations for ions one can derive evolution 
equation,  describing  this  dip.  Really  we  use  slow 
evolution  of  the  dip  for  its  description.  In  zero 
approximation,  taking  into  account  that  the  resonant 
electrons are reflected from the dip, one can derive from 
Vlasov equation the expression for  electron distribution 
function 

fe=foe[-(V2-2e(ϕ±∆ϕ)/me)1/2±V||], V>
<A(ϕ)sign(z)  (1)

A(ϕ)=[2e(ϕo+ϕ)/me]1/2.
We use the normalized values: φ≡eϕ/Te, N-≡no-/no+, Ne

≡noe/no+,  Q±=q±/e,  Vs±=(Te/M±)1/2.  We  normalize  x  on 
Debye radius of electrons rde, V|| on Vthe, time t on plasma 
frequency  of  positive  ions  ωp+

-1,  velocity  of  solitary 
perturbation Vc on ion-acoustic velocity (Te/M+)1/2. Te, is 
the  temperature  of  electrons,  no-,  no+ are  unperturbed 
densities of negative and positive ions, q± is the charge of 
positive and negative ions.

Integrating (1), one can derive the electron density in 
first approximation on Vо 

ne≈noeexp(φ)[1-(2∆φ/√π)∫o
βdx exp(-x2)-

-2V||(2/π)1/2∫o
βdx (x2-φ)1/2exp(-x2)]  (2)

Far from the dip the plasma is quasineutral ne(z)z→∞ 

=ne(z)z→-∞=1. From here one can derive,  using (2),  the 
expression for potential jump near the dip 

∆φ=V||(2/π)1/2(1-exp(-φo))/[1-(2/√π)∫o
√φo dx exp(-x2)] (3)

From hydrodynamic equations for ions one can obtain 
for perturbations of densities of positive and negative ions 

ni±=n±NL+n±τ , n±NL=no±/[1-(±q±)2ϕ/M±Vc
2]1/2,  (4)

∂n±τ/∂z=±2(∂ϕ/∂t)(no±q±/M±Vc
3)×

×[1-(±q±)ϕ/M±Vc
2]/[1-(±q±)2ϕ/M±Vc

2]3/2

Substituting  (2),  (4)  in  Poisson  equation  one  can 
derive nonlinear evolution equation

∂3
zφ+{Q+

2V2
s+(1-2φQ+V2

s+/Vc
2)-3/2(1-φQ+V2

s+/Vc
2)+
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+Q-
2N-V2

s-(1+2φQ-V2
s-/Vc

2)-3/2(1+φQ-V2
s-/Vc

2)}2∂tφ/Vc
3

+(∂zφ/Vc
2){Q+

2V2
s+(1-2φQ+V2

s+/Vc
2)-3/2+

+Q-
2N-V2

s-(1+2φQ-V2
s-/Vc

2)-3/2}-  (5)
-{exp(φ)-sign(z)V||(2/π)1/2{(φo/(φo+φ))1/2exp(-φo)-

-∫√-φ
√φo dy(1-2y2)exp(-y2)/(y2+φ)1/2+

+(1-exp(-φo))[1-(2/√π)∫o
√φo dxexp(-x2)]-1×

×[exp(-φo)/(φo+φ)1/2+2(φo+φ)exp(-φo)+
+4∫√-φ

√φo dy y(y2+φ)1/2exp(-y2)]/√π}}∂zφ=0

From nonlinear equation (5) one can show that the dip 
propagates with the slow velocity Vc≈0. From (5) one can 
get also the growth rate of the dip small amplitude 

γnl≈ωp+(V||/Vthe)3/2(q+/e)(n+/ne)1/2{1+
+[1/3-(ne/n+)(e/q+)](eϕo/Te)(π/2)1/2(Vthe/2V||)} (6)

One can see that  the dip is  formed at  ratio  of  electron 
current  to thermal velocity V||/Vthe larger than threshold. 
The threshold decreases at decreasing of ratio of electron 
and  positive  ion  densities  ne/n+ and  equal  zero  at 
ne/n+<q+/3e. The threshold is maximum at ne/n+=1. 

BARRIER FORMATION FOR PLASMA IONS 
IN KIND OF ELECTRIC POTENTIAL HUMP 

NEAR ECR POINT

As the  electrons  are  reflected  from the  dip  and  the 
flow  ions  pass  with  Vo+ through  the  dip  freely, 
noncompensated volume charge of ions is formed after the 
dip,  in  which  field  the  ions  are  slowing  down  and 
reflected.  This volume charge forms perturbation of  the 
electric potential hump. The ion flow enhances this hump 
of the electric potential. We describe the quasistationary 
properties  of  the  hump,  neglecting  the  nonequilibrium 
condition.  Taking  into  account  the  nonequilibrium 
condition leads to the hump’s excitation, in other words to 
growth of the hump’s amplitude.  Further we will show, 
that  the  electric  potential  hump is  almost  nonmobile  in 
space. 

In linear approximation the perturbation excitation by 
plasma  flow,  propagating  relative  to  negative  and 
motionless  positive  ions,  is  described  by  the  following 
dispersion ratio:

1+1/(krde)2-ω2
p+/(ω-kVo+)2-ω2

p-/ω2-ω2
pq/ω2=0. (7)

Here  ω,  k  are  the  frequency  and  wavevector  of  the 
perturbation;  ωp± are  the  plasma  frequencies  of  the 
negative  and  flow’s  positive  ions;  ωpq is  the  plasma 
frequency of the positive motionless ions; rde is the Debye 
radius of electrons; Vo+ is the velocity of the positive ion 
flow.

From (7)  one  can  see  that  one  can  select  the  flow 
velocity such

Vph=ω/k≈(Vo+/24/3)[(n-m+q-
2/ n+m-q+

2)+
+(n+qq+q

2/ n+q+
2)]1/3<<Vs+,

λ=2π/k=2πrde/(Vs+
2n+q+

2/Vo+
2nee2-1)1/2>>rde, (8)

that the  perturbation  is  almost  motionless,  that  is 
Vph<<Vs+. Vs+=(T/m+)1/2 is the ion-acoustic velocity of the 
flow positive ions.  Here  n-,  m-,  q- (n+,  m+,  q+ )  are  the 
density, mass and charge of the negative (positive) ions.

From  (7)  one  can  derive  the  growth  rate  of  the 
perturbation excitation: 

γ=(1.5)1/2(Vo+/rde)[(n-m+q-
2/n+m-q+

2)+
+(n+qq+q

2/n+q+
2)]1/3(Vs+

2q+/Vo+
2e-1)1/2. (9)

On non-linear stage of the instability development the 
electric  potential  perturbation  ϕ represents  the  solitary 
hump of finite amplitude ϕo. 

The distribution function of nontrapped electrons, that 
is arranged outside the separatrix, looks like:

fe(v)=[noe/Vte(2π)1/2]exp(eϕ/Te-mev2/2Te).  (10)

For  trapped  electrons,  that  is  for  electrons  located 
inside  the  separatrix,  the  distribution  function  does  not 
depend  on  energy  because  of  an  adiabaticity  of  the 
evolution.

Integrating  the  electron  distribution  function  on 
velocity,  we  receive  following  expression  for  electron 
density:

ne=(no/(2π)1/2)(2/T)3/2∫∞
odε(ε+eϕ)1/2exp(-ε/T).  (11)

From hydrodynamic equations  for  positive ions it  is 
possible to receive following expression for their density:

n+=no+/[1-2q+ϕ/m+(Vo+-Vh)2]1/2. (12)

Here Vh is the velocity of the solitary perturbation. 
As a result from (11),  (12) and  Poisson equation  we 

have  equation for  the spatial  distribution of the electric 
potential of the perturbation of any amplitude:

φ’’=(2/√π)∫ ∞
odae-a(a+φ)1/2-1/(1-2Qφ/voh

2)1/2.  (13)

Q=q+/e, φ=eϕ/T, «’»=∂/∂x, x=z/rde, voh=(Vo+-Vh)/Vs+. 
From the condition  φ’|φ=φo=0 and (13)  we obtain  the 

hump velocity, voh:

voh
2/Q=(A-2)2/2(A-2-φo),

A=(8/3√π)∫ ∞
odae-a(a+φ)3/2. (14)

In the approximation of small amplitudes from (13), 
(14) we receive:

voh
2≈ Q,  L≈[15√π/4(1-1/√2)]1/2φo

-1/4.  (15)

If  Vo+ close  to  (q+/e)1/2Vs+,  then  the  perturbation  is 
approximately motionless. 

Taking into account the small densities negative and 
motionless  positive  ions,  we  obtain  from  the  Poisson 
equation the evolution equation:

2ω2
p+∂3ϕ/∂t3/(Vo+-Vh)3=-(ω2

p-+ω2
pq)∂3ϕ/∂z3. (16)
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From  (16)  the  growth  rate  of  the  non-linear 
perturbation amplitude is followed:

γNL≈ωp+(eϕo/T)1/2[(no-m+q2
-/no+m+q2

+)+
+(noqq2

+q/no+q2
+)]1/3 .  (17)

ELECTRON MECHANISM OF BARRIER 
FORMATION FOR PLASMA IONS NEAR 

ECR POINT

Let us consider the mechanism of the electric potential 
hump formation by plasma electrons near the dip of the 
electric potential.

The  potential  jump accelerates ions.  Hence on first 
front of the electric potential dip the ion density becomes 
smaller. If into this region the electron flow penetrate with 
electron velocity only a little smaller than electron thermal 
velocity, hence on the first front of the potential dip the 
electron drift velocity becomes more than electron thermal 
velocity due  to  flow continuity law.  Due  to  Bunemann 
mechanism interaction of electron flow with this region an 
electric potential hump is excited.

Let  us  describe  a  solitary  perturbation  in  type  of 
electric potential hump. We will show that it represents a 
nonlinear perturbation on a slow electron-sound mode. As 
it  is  slow,  resonant  electrons  can  be  trapped  by  such 
perturbation. 

From Vlasov equation the expression for perturbation 
of  electron  distribution  function  follows.  Integrating 
which on  velocities  in  case  of  small  amplitudes  of  the 
solitary perturbation ϕo one can derive the expression for 
perturbation of electron density 

δn'=∂tϕ[y+(1-2y2)(1-R(y))/y]+
+ϕ'R(y)+ϕϕ'[1-y2+(3/2-y2)(R(y)-1)]  (18)

R(y)=1+(y/√π)∫-∞
∞dtexp(-t2)/(t-y), y=Vh/Vth√2

Here  point  means  derivation  on  time,  and  prime  is  a 
spatial  derivation.  Vh,  ϕ are  velocity  and  potential  of 
soliton.  φ=eϕ/Te.  Substituting (18)  in  Poisson  equation, 
one can derive an equation, describing spatial distribution 
of potential:

(φ')2 =φ2R(y)-[1+(2y2-3)R(y)]φ3/6 (19)

Let us determine approximately the soliton width from 
(19):  ∆x=(48Te/ϕo)1/2.  The  soliton  width  decreases  with 
amplitude growth. 

In  case  of  large  amplitudes,  eϕo/Te>1,  from Vlasov 
equation we have the expression for electron distribution 
function  f=fo[(u2-2eϕ/m)1/2+Vhsign(u)]  for  u=V-Vh
>(2eϕ/m)1/2. Here fo is Maxwell distribution function. 

Thus we obtain the equation for the soliton shape

(φ')2=
=-φ+(2/√π)1/2∫-∞

∞dt(t-y)2exp(-t2){[1+φ/(y-t)2]1/2-1} (20)

From (20) 

∆x=[2eϕo/Te(√2-1)]1/2 (21)

we  conclude  that  the  soliton  width  grows  with  ϕo. 
Therefore, it is necessary to take into account electrons, 
trapped by the soliton field. Assuming distribution of their 
density as ntr(x)=n2exp[eϕ(x)/Ttr],  we derive similarly to 
(21),  that  width  and  velocity  of  the  soliton  grow with 
amplitude  growth  (in  difference  from  case  of  small 
amplitudes of the solitary perturbation).

Thus,  at  a  neglect  of  ion  mobility  this  solitary 
perturbation is  stationary and electron one.  However at 
taking  into  account  of  ion  mobility  it  is  necessary  to 
expect  occurrence  of  slow growth of  the  perturbation’s 
amplitude,  as  a  result  of  Bunemann  instability 
development.  In  the  following  order  of  the  theory  of 
disturbances from (18) one can derive the correction of 
the next order to a spatial derivative from electron density 

ne1'=∂tϕ[y+(1-2y2)(1-R(y))/y] (22)

This expression, as follows from a spatial derivative from 
Poisson equation, should be equal to a spatial derivative 
from ion density perturbation ni'. ni' is possible to find in 
linear approximation from ion hydrodynamic equations 

∂2
tni=(me/mi)φ'' (23)

Equating the second time derivative from (10) and 
first spatial derivative from (23), we obtain 

∂3
tφ=(6me/mi)φ''' (24)

The solution of (24) we search as

φ(x,t)=φo(t)η[x-∫-∞
t dt1δvo(φo(t1))] , (25)

η(x)  is  quasistationary  shape  of  the  perturbation, 
assuming, that ∂tφo(t)=γφo(t). In (25) the change of soliton 
velocity  with  change  of  its  amplitude  is  taken  into 
account.

Substituting ∂tφ through γφ-δvhφ’, we obtain from (24)
γ≈(me/mi)1/3φo

1/2 
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