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The crystal formation of heavy negative ions is considered in following system. The plasma flow with positive 
ions and electrons propagates vertically up and extends in radial direction. The flow propagates relative to heavy 
negative ions, subjected to gravity. The flow excites the perturbations of large amplitudes. The properties and 
evolution of these excited perturbations are considered. The evolution equation is derived for the case of any 
amplitudes. It is shown that these perturbations of large amplitude lead to spatial ordering of heavy negative ions in 
nonequilibrium plasma. 

 
Plasma with heavy negative ions, strongly coupled 

dusty plasmas (or so called colloidal plasmas), plasma 
crystal formation  (or so called ion crystal formation) 
and wave propagation through a plasma crystal are 
investigated now intensively (see, for example, [1, 2]). 
In particular, the formation of the plasma crystals has 
been observed in experiments at providing of 
nonequilibrium state. If in equilibrium plasma there was 
no plasma crystal but at propagation of laser radiation 
through plasma or at providing of small nonequilibrium 
state by electric probe in plasma in experiment an ion 
crystal has been formed. The ion crystals have been 
formed also in plasma flow relative to heavy negative 
ions. 

In this paper the formation of crystals of heavy 
negative ions is considered in plasma flow relative to 
these negative ions. Namely, the plasma flow with 
positive ions and electrons propagates vertically up and 
extends in radial direction. The flow propagates relative 
to heavy negative ions, subjected to gravity. The flow 
excites the perturbations of large amplitudes. The 
properties and evolution of these excited perturbations 
are considered. The generalised equation is derived for 
the spatial distribution of field of any amplitudes for the 
case of the plasma crystal formation on generalised dust 
ion-acoustic mode. Also the evolution equation is 
derived. It is shown that these perturbations of large 
amplitude lead to spatial ordering of heavy negative ions 
in nonequilibrium plasma. Considered state of plasma 
constitutes a special form of colloidal plasmas, i.e. 
plasmas containing micron-sized particles (dust grains). 

We investigate theoretically of a plasma crystal 
formation in colloidal nonequilibrium plasmas. The 
considered plasma crystal is the lattice of heavy negative 
ions of grains.  

Investigations of a plasma crystal formation are 
performed for the case of strong magnetic field with 
field strength so that the gyro radii of ions comparable 
with distance between the grains in the lattice. 

We show theoretically that the plasma crystal is 
formed at providing of nonequilibrium state. If in 
equilibrium plasma there is no plasma crystal but at 
providing of small nonequilibrium state by propagation 
of plasma flow through cloud of colloidal particles a 
plasma crystal is formed.  

The formation of a plasma crystal is considered in 
dusty colloidal plasma with relative propagation of 

grains and plasma with light ions with small flow 
velocity.  

It is shown that the longitudinal chain of solitary 
perturbations (similar to [3]) of large amplitudes is 
formed on generalised ion-acoustic mode in plasma 
flow; the velocity of this mode in system, propagating 
with light ions, is faster than the ion-acoustic velocity, 
but in laboratory system the velocity of this mode is near 
zero; these perturbations of large amplitude lead to 
trapping of heavy negative ions of grains and to spatial 
ordering of them in nonequilibrium dusty colloidal 
plasmas. Though gravity provide relative propagation of 
heavy grains downwards relative to light positive ions, 
the plasma crystal is motionless, because grains are 
trapped by chain of solitary perturbations formed due to 
instability development on generalised dust ion-acoustic 
mode with velocity equal zero. 

The excitation by a plasma flow, propagating 
relative to negative heavy ions, linear perturbations is 
described by a following ratio 

 

1+1/(krde)2-ω2
p+/(ω-kVo+)2-ω2

p-/ω2=0  (1) 
 

Here ω, k are frequency and wave vector of the 
perturbations; ωp± , ωp- are the plasma frequencies of the 
positive and negative ions;  rde is the electron Debye’s 
radius;  Vo+ is the flow velocity of the positive ions. 

From (1) one can obtain, that one can select the 
plasma flow velocity such, that 

 

Vph=ω/k≈(Vo+/24/3)(n-m+q-
2/ n+m-q+

2)1/3<<Vs+,  
λ=2π/k=2πrde/(Vs+

2n+q+
2/Vo+

2nee2-1)1/2>>rde     (2) 
 

the periodic in space field is motionless, that is 
Vph<<Vs+. Vs+=(T/m+)1/2 is the ion-acoustic velocity of 
the positive ions. 

From (1) one can obtain, that the growth rate of the 
perturbation equals 

 γ=                                      (3) 
=(1.5)1/2(Vo+/rde)(n-m+q-

2/n+m-q+
2)1/3(Vs+

2q+/Vo+
2e-1)1/2  

 

At non-linear stage of instability development an 
electrical potential ϕ of the perturbation represents the 
chain of the solitary narrow humps of finite amplitudes 
ϕo. Let us consider properties of the separate solitary 
perturbation. Because the negative ions are heavy and 
their density is small, we suppose, that the shape of a 
quasistationary perturbation is determined by dynamics 
and distribution in space of electrons and positive ions. 
The interaction of this perturbation with heavy negative 
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ions results in excitation of a perturbation, that is to 
growth its amplitude. 

With growth of the amplitude of the perturbation the 
adiabatic stage of the evolution starts early for electrons 
ϕo >(me/e)(γ/k)2 . Then the velocity distribution function 
of electrons, located outside of a separatrix, has the 
following kind 

 

fe(v)=[noe/Vte(2π)1/2]exp(eϕ/Te- mev2/2Te)  (4) 
 

For the trapped electrons, i.e. for electrons, located 
inside a separatrix, the distribution function does not 
depend on velocity due to adiabatic evolution. 

Integrating the velocity distribution function of 
electrons one can derive the expression for electron 
density 

 

ne= (no/(2π)1/2)(2/T)3/2∫∞odε(ε+eϕ)1/2exp(-ε/T)       (5) 
 

The expression for density of the positive ions one 
can get from hydrodynamic equations 

 

n+=no+/[1-2q+ϕ/m+(Vo+-Vh)2]1/2   (6) 
 

Here q+, m+, Vo+ are charge, mass and velocity of the 
positive ions; Vh is the velocity of the solitary 
perturbation.  

Substituting (5), (6) in Poisson’s equation, one can 
derive the equation for spatial distribution of an 
electrical potential of the perturbation of any amplitudes 

 

φ’’=(2/√π)∫∞odae-a(a+φ)1/2-1/(1-2Qφ/voh
2)1/2  (7) 

 

Q =q+/e, φ=eϕ/T, “’”=∂/∂x, x=z/rde, voh=(Vo+-Vh)/Vs+.  
The equation (7) can be transformed to following 

kind 
(φ’)2=(8/3√π)∫∞odae-a(a+φ)3/2-4+(2v2

oh/Q)[(1- 
-2Qφ/voh

2)1/2-1] (8) 
 

From a condition φ’|φ=φo=0 and (8) the nonlinear 
dispersion relation follows 

voh
2/Q=(A-2)2/2(A-2-φo),  

A=(8/3√π)∫∞odae-a(a+φ)3/2                    (9) 
 

In approximation of small amplitudes from (8), (9) on 
can get for voh and width of the solitary perturbation L 

voh
2≈ Q,  L≈[(15√π/4(1-1/√2)]1/2φo

-1/4  (10) 
 

Therefore, if to select the velocity of the plasma 
motion, equal (q+/e)1/2Vs+, then the perturbation is 
approximately fixed in a laboratory system. Then also 
we have from (2) λ>>L. That is the perturbations 
represent the chain of the narrow potential humps with a 
large distance between them. Because the potential 
humps trap the negative heavy ions, then last are 
localised in space. 

Until now we considered a quasistationary 
longitudinal structure of a field, determined by dynamics 
of electrons and light positive ions. Now we consider 
the growth in time of the amplitude of separate solitary 
perturbation due to its interaction with negative heavy 
ions. For that we take into account in hydrodynamic 
equations for positive and negative ions the next terms 
of expansion on small parameter γ/kVtr-, Vtr- = (q-ϕo/m-
)1/2. Substituting them in Poisson’s equation, we obtain 
the evolution equation 

 

2ω2
p+ ∂3ϕ/∂t3/(Vo+-Vh)3=-ω2

p-∂3ϕ/∂z3  (11) 
 

From (11) one can get that the growth rate in time of the 
nonlinear perturbation amplitude equals 
 

γNL≈ωp+(eϕo/T)1/2(no-m+q2
-/no+m+q2

+)1/3  (12) 
 

Let us show that the plasma flow also excites the 
transversal oscillations with growth rate closed to the 
growth rate of longitudinal oscillations. From [4] one 
can obtain that in the case  cosθ<<ωp-/ωpe , when the 
term ω2

p-/ω2 in the dispersion law, determining the 
instability development and oscillation excitation, is 
essential, then the dispersion law has following kind 

 

1+ω2
pe/ω2

ce-ω2
p+/((ω-kVo+)2 -ω2

c+)-ω2
p-/ω2≈0   (13) 

 

Here θ is the angle between direction of transversal 
perturbation propagation and vertical direction. 

At first, neglecting the last term, in the first 
approximation on  ω/ωp+  from (13) one can find the 
wave vector of the most unstable wave  

 

k≈ωp+/Vo+(1+ω2
pe/ω2

ce)1/2   (14) 
 

In the next approximation on  ω/ωp+, taking into 
account the last term, from (13) one can find, that the 
growth rate of the excitation of the transversal spatially 
periodic field  

γ=(1.5)1/2ωp+(n-m+q-
2/n+m-q+

2)1/3/2(1+ω2
pe/ω2

ce)1/2  (15) 
 

is closed to the growth rate of longitudinal periodic field 
excitation. In the same approximation from (13) one can 
obtain, that the transversal perturbation propagates with 
velocity, approximately equal to the phase velocity of 
the longitudinal perturbation. The last promotes for 
trapping of negative ions by transversal field as well as 
by longitudinal field. 

From (2), (14) one can see that the transversal period 
of the lattice approximately equals to the longitudinal 
spatial period. Therefore, if density of negative ions is 
such one no-, that a single negative ion appears in area, 
which radius is equal to the wavelength  λ, and volume 
is equal (4π/3)λ3 , i.e. no-(4π/3)λ3 =1, then the trapped 
heavy negative ions form crystal with the same 
dimensions in a longitudinal direction and in a 
transversal direction. If the density of the negative ions 
is small, no-(4π/3)λ3 <1, then nonideal crystal is formed. 
Nonideal crystal is due to that not each longitudinal and 
transversal spatial interval, equal to wavelength, 
contains the negative ion. 

From (2) one can obtain that the crystal is formed, 
when amplitude of perturbation  ϕo  reaches the 
amplitude of negative ion trapping  

 

eϕo/T>(n-
2m-q-

4/211n+
2m+q+

4)1/3   (16) 
 

From (16) one can see that the density of negative ions 
should be small for crystal formation at final amplitude 
of perturbation. 
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