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 In the present work the problem of ideal MHD equilibria of compressible plasma with mass flow in axisymmetric 
tokamak is investigated. The generalized Grad-Shafranov equation is derived for an arbitrary co-ordinate system. 
Two equations of equilibrium are derived by means of an expansion with respect to the inverse aspect ratio from this 
equation. It is shown that the Shafranov shift is essentially effected by the toroidal velocity for a conventional 
tokamak. 
 

1. The reduction of the vector equations 
 
 As starting point we consider the following set of 
well-known stationary, non-linear single-fluid MHD 
equations, which describe the macroscopic dynamics of 
ideal compressible plasma with mass flow 
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where ρ , v
!

, and p  are, respectively, plasma mass 

density, velocity and pressure, E
!

and B
!

 are the electric 
and magnetic fields, j

!
 is the current density. 

 In order to close this set of equations in addition one 
has to apply ideal Ohm’s law  
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!!!
v , Φ∇−=E

!   (2) 
together with equation of plasma state 

( ) 0S =∇⋅v
! ,  (3) 

where γρ=pS is entropy. 
 Axially symmetric solutions of the system of Eqs. (1) 
- (3) are considered in arbitrary co-ordinates ( )321 x,x,x   

[1]. According to our assumption we put 0x3 =∂∂  and 
introduce the velocity and magnetic fields in the form  
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+×ψ∇= , 
where the superscripts and subscripts indicate 
contravariant and covariant components of a vector, 
respectively. 
 By taking into account the representation (4), the 
system of Eqs. (1) - (3) can after some manipulations be 
reduced to the following scalar partial differential 
equations 
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where the expressions { }",P  and ∆  in (5) are given by 
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kig  are the coefficients of metric tensor, kigdetg = . 

 Eqs. (5) describe the general structure of the 
magnetic, electric and the velocity fields, and of the 
pressure and density profiles for stationary axisymmetric 
toroidal dynamics, where the velocity and magnetic 
fields are assumed to be in general non-parallel. 
 

2. The modified Grad – Shafranov  equation 
 
 With the help of Eqs. (5) and (6) one may easily find 
the following useful expressions required in the 
following investigations 

( )( )[ ] ( )( )[ ]2
33

3 dd41ddddc4gIB ψϕρπ−ψϕψΦπ+=  , 
              (7) 

( )( )( ) ( )[ ]ψΦ+ρψϕ= ddc1ddgI 33
3v  

                                                     ( )( )[ ]2dd41 ψϕρπ− , 
where the poloidal current ( )ψ=II  is a surface function. 
In general, the pressure and mass density are no flux 
function. 

By taking into account the relations 
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we then infer that Eqs. (5) leads to the modified Grad - 
Shafranov equation for compressible plasma with mass 
flow in the form 
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Based on cylindrical co-ordinates 
( )ϕ=== 321 x,zx,Rx , when ( )z,Rψ=ψ , we  
derive with the help of (7), (8), (9) the Kerner - Tokuda 
equation [2] for a compressible plasma with mass flow 
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where the differential operator 
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appearing in Eq. (11), is well-known Grad-Shafranov 
operator. 

In the static limit ( )0dddd =ψΦ=ψϕ  Eq. (11) 
reduce to the Grad-Shafranov equation for the potential 

( )z,Rψ . 
 

3. Equilibrium with nested magnetic surfaces 
  

Following [3], we assume that the magnetic flux 
surfaces consist of a family of closed nested-in toroidal 
surfaces with «on-average» circular cross-section so that 
we can introduce a radial co-ordinate a , which 
coincides with the average radius of the magnetic 
surfaces. We also suppose that magnetic surfaces 
wrapped around a single magnetic axis, which is shifted 
relatively to the geometric axis by an amount ξ . We 
introduce on the magnetic surfaces consta =  the 
poloidal ( )θ  and toroidal φ angles as independent 

variables. In these «quasi-toroidal» co-ordinates 
( )φθ ,,a  a magnetic field can be represented in the form 
                             ( )Θ′χ ′

π
= ,,0

g2
1Bi ,  (13) 

where χ  and Θ  are the poloidal and toroidal magnetic 

fluxes, ( ) ( ) a∂∂≡′ "" . Thus the representation (13) 
of the magnetic field is formally obtained from the one 
of Eq. (4) by transformation 

( ) ( )Θ ′π⇒θ g21,aB 3 , 

                                                                                                                                                                                                                        (14) 
  ( ) ( ) ( ) ( )a21a,a χπ−=ψ⇒θψ . 

Since the potential  ψ  only depends on the radial co-
ordinate a , immediately leading to the following 
relations for the physical variables 
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 Stationary toroidal equilibria, described by Eq. (11), 
can be investigated by means of an expansion with 
respect to the inverse aspect ratio Ra=ε . Following 
[3], we obtain with the help of Eq. (11) by neglecting 
terms of the order ( )3O ε  the non-zero components of 
the metric tensor kig  in the form: 

( ) ,sinaag,cos21g 2
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θλ+= cosa2ag 2
22                                                 

( ) ,acos2aRg 2
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( )( )θ−λ+ξ ′+= cosak1Rag , 
where λ  is the parameter of «strightforward» magnetic 
force lines (see detailes in [3]). 
 We employ the first equation (7) to in order to find 
an expression for the unknown parameter λ . Under the 
conventional tokamak ordering (the superscript ""0  
denotes the cylindrical terms) 
 ( ) ( ) ,BB,1q 00 ε≈≈ φθ

  (17) 
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the Eq. (7) gives the following well-known expression 
for λ  

     ak−ξ ′−=λ .  (18) 
The components of the metric tensor (16) together with 
(18) fully describe the geometrical properties of the 
equilibrium with mass flow. 
 In the leading order ( )2O ε  Eq. (11) describes the 
stationary cylindrical equilibrium 
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here 
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In the next order ( )3ε≈ , Eq.(11) describes the first - 
order toroidal correction to the cylindrical equilibrium 
(19) leading to 
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 If the plasma is surrounded by a perfectly conducting 
a rigid wall of radius 0aa = , then we have 

( ) 0aa 0 ==ξ . With the help of this boundary condition, 
we obtain from Eq.(21) the following simple expression  
for the Shafranov shift ξ : 
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 In the case of 0dd =ψϕ , Eqs. (19) and (21) 
describe an equilibrium with purely toroidal rotation and 
in the case 0dd =ψΦ  - one with purely parallel 
rotation. 
 From Eqs. (17) and (22) one may easily obtained an 
estimation for the electric fields required, in order to 
sufficiently affect on the plasma equilibrium 
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 In the case of parallel flow the following relation for 
the ratio between the poloidal and toroidal velocities is 
obtained 
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 On conclusion we note, that from the onditions 
( ),aSS =  ( ),aHH = it follows, that in the presence of 

flow the magnetic surfaces do not coincide with the one 
of constant pressure and density 
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Now the presssure and density consist of two parts: the terms 
( )ap0  and ( )a0ρ , which are constant on the magnetic 

surfaces, and its deviations ( ) ( ) θcosap 1  and ( ) ( ) θρ cosa1  
arising from a finite plasma flow. 
 

4. Conclusions 
 
The basic results of this work are as follows: 
• The stationary single-fluid MHD vector Eqs. (1) - (3) are 

reduced to a set of scalar partial differential Eqs. (5) - (6). 
• The modified Grad-Shafranov equation (9) is obtained 

from Eqs. (5) for a compressible plasma with non-parallel 
flow in axisymmetric toroidal magnetic traps. 

• The modified Grad-Shafranov equation is rewritten in 
quasi-toroidal coordinates, describing the equilibrium of 
toroidal plasma with mass flow and nested-in magnetic 
surfaces. 

• The metric relations (16), (17), and (18) for quasi-toroidal 
coordinates describing the equilibrium of a plasma with 
flow in a tokamak are derived. It is found that in a 
conventional tokamak only the toroidal velocity (see Eqs. 
(20), (21)) can sufficiently affect on the Shafranov shift. 

• An estimation (24) for the internal radial electric field, 
which can sufficiently affect the plasma equilibrium is 
derived. 

• It is shown (see (25)) that for a plasma equilibrium with 
parallel flow the ratio of the toroidal and poloidal 
components of the velocity and the magnetic field are 
equal and proportional to the aspect ratio. 

• It is shown that due to the plasma flow the constant 
pressure and density surfaces are shifted relatively to the 
magnetic surfaces, where these deviations are given by 
Eq. (26). 
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