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1. INTRODUCTION

In the present paper, using an analytic solution of
the linearized drift kinetic equation in the long-
mean-free-path regime, formulas for neoclassical
transport coeflicients and for the parallel current
density are obtained for stellarator configurations
with realistic magnetic field geometry. As in the
standard neoclassical theory, for the solution of the
linearized drift kinetic equation, the deviation of the
distribution function from a Maxwellian is expanded
into a series with respect to the collision frequency.
The leading order term in this expansion is propor-
tional to 1/v. This leading term is sufficient to ob-
tain the particle and energy fluxes in this regime.
In [1], this term is calculated taking into account all
classes of trapped particles. Finally, the results are
presented in a form containing a line integral along
the magnetic field line and an integration over the
perpendicular adiabatic invariant of trapped parti-
cles.

For the calculation of the parallel current density,
also the next term in the expansion over the collision
frequency is necessary. In contrast to 1/v transport,
where the contribution of multiply trapped particles
within many local magnetic field minima is small,
they play an essential role in the formation of the
parallel current density. In [2], a method to calcu-
late the bootstrap current is proposed which utilizes
Boozer coordinates and which is also based on a line
integration along the magnetic field line. Here, this
procedure is generalized in two ways: (i) the con-
tribution of trapped particles is taken into account;
and (ii) calculations can also be done directly in real
space coordinates. As a consequence of (i) also the
local current density can be calculated and can be
shown to be consistent with results obtained from
ideal MHD equilibrium equations. In addition, also
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the problem with the interpretation of the boundary
condition at the trapped-passing boundary in [2] is
solved.

The method is very flexible and can be used in
cases when only a real space realization of the mag-
netic field is available as well as in cases when a
Boozer representation exists. The second case is es-
pecially interesting for stellarator optimization stud-
ies because results can be obtained numerically on a
very fast time scale.

2. DRIFT-KINETIC EQUATION

The starting point is the linearized drift-kinetic
equation in the long-mean-free-path regime with a
Lorentz collision operator which describes pitch an-
gle scattering but does not conserve momentum,
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where o is the sign of the parallel velocity, s is the
distance measured along the magnetic field line, 9
is the magnetic surface label, V¥ = V - V4 is a ra-
dial component of the drift velocity, vﬁ =v?-J, B,
Ji = v} /B is the perpendicular adiabatic invari-
ant, B is the magnetic field module, far = far (¥, w)
is the Maxwellian distribution function, f is the
correction to the distribution function according to
f=fu+f, w=mv?/2+ed is the total energy,
® is the electrostatic potential, and v A is the pitch-
angle scattering frequency. As discussed in [2], for
small magnetic field modulations within the mag-
netic surface, the momentum preserving term will
change the resulting value of the average parallel
current by a factor which is weakly dependent on
the magnetic field geometry and, therefore, can be
taken from tokamak theory.

The problem in the interpretation of the bound-
ary condition at the trapped-passing boundary in



[2] where the “last” class of trapped particles can-
not be identified, does not appear if instead of an
irrational surface one first considers a rational sur-
face. In this case, the number of classes of trapped
particles stays finite, and the boundary conditions
are clearly defined. Then, the irrational surface can
be considered as a limiting case of a “true” rational
surface [3] which satisfies the closure condition for
the equilibrium currents (Pfirsch-Schliiter),
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where

kg =Vi-h x v1nB/|v¢|
=(hx (h-V)h)-Vy/|Vy], (3)

is the geodesic curvature of the magnetic field line
and h = B/B. With the help of (3) the radial drift
velocity can be presented in the form
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The correction f to the distribution function is ex-
panded in a series over the collision frequency

f~=f—1+go+f0+91+f1+---, (6)

with fr,gr ~ v*, where f} is constant and g, varies
along the magnetic field line. Thus, the kinetic equa-
tion is split into the series of equations
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where k = 0,1,... The requirements for g; are that

these functions are periodic for passing particles,

g9(s) = g(s + L), (9)

where L is the magnetic field field period along the
field line, and satisfy

9k (s0)| 51 = gr(50)[y—_1 > (10)
in the reflection points sg = Smin and Sp = Smax
where v)(sg) = 0 for trapped particles. The only
requirement to f}, is that these functions are inde-
pendent from ¢ in the trapped particle region. Con-
ditions (9) and (10) leave freedom for the constant

part of g; along the field line. This freedom is re-
moved by imposing the conditions
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where sy, is the left reflection point for trapped par-
ticles or the point of the global magnetic field max-
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imum on the field line for passing particles. With
this, one obtains
9o(s) = (12)
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where £k = 0,1,... One can see that the functions

fr and g are symmetric with respect to o for odd
k and antisymmetric for even k. Therefore, in the
trapped particle region fr = 0 for even k. Equations
for fi (constraint conditions for gg41) are obtained
from the conditions (9) and (10) for passing particles
and for trapped particles, respectively,
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For passing particles the integrals (17) are defined
as
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with Smax = Smin + L, whereas for trapped particles
they are defined as
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The boundary conditions for f; at the boundary be-
tween different classes of trapped particles or at the
trapped-passing boundary (J,. = Jp and J; = Jp2
in Fig. 1, respectively) are obtained from the inte-
gration of (7) and (8) over the area of the boundary
layer and subsequent summation over o.
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Figure 1: Boundaries between classes, Jp; and Jya,
and regions of integration in the boundary layer. Re-
gions 1, 2 and 3 correspond to different classes of
trapped particles.

Using the condition (10) at the reflection points,
one obtains at these boundaries
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respectively. Here the superscript (j) enumerates
the particle population. Particles have index j if
they can pass through the magnetic field minimum
j but never reach minimum j — 1. The minima are
numbered starting from the global maximum of the
magnetic field on the field line. Subscripts “+” and
“—” denote the regions with particle passing through
the local magnetic field maximum (region 3 in Fig. 1)
and particles reflected in its neighborhood (regions
1 and 2 in Fig. 1), respectively. There exist two
further conditions related to the distribution func-
tions fr, namely that f stays finite at the bottom
of each magnetic well, J; = v?/Bnin, where Bpin
is a local minimum of B, and that f; stays finite at
the boundary into the passing region J; = 0. This
leads at those boundaries to

F9 =o. (22)

Conditions (20), (21) and (22) can be satisfied si-
multaneously, using (22) in the whole phase space.
Thus, one obtains
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Function go (24) formally has a J-singularity at
the boundaries between classes and at the trapped
passing boundary because H/I has a jump there.
One can check that the integration of gy across the
boundary gives the correct result if one assumes a
fast but continuous change of H/I in the bound-
ary layer. Integrating (1) over the boundary layer

regions A, B or C (see Fig. 1), depending on the
boundary and position of the point s, one obtains in
the lowest order the correct jump condition for gg.
Finally one obtains for fy in the passing region
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2. PARTICLE AND ENERGY FLUXES

The expression (23) for f_; yields particle and en-
ergy fluxes in 1/v regime [1]. The definition of the
averaged particle flux density F), is given as

fn = WS il /dw/d‘ulv -

(26)
The equivalence of surface and field line averaging
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and integration by parts over J; changing the order
of integration so that the integral over s becomes the
innermost one, integration over energy and reorder-
ing of terms, yields
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where w = 2T + e® and the effective ripple modula-
tion e is given by
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with the additional integrals over s
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