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A study is made of the dynamics of particles interacting with electromagnetic field fluctuations in a plasma in the 
presence  of  a  magnetic  field.  Possible  mechanism of  anomalous  transport  is  analyzed.  Estimates  of  the  diffusion 
coefficient are proposed based on the calculations of particle trajectories.
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1. INTRODUCTION

The  paper  is  devoted  to  analyzing  the  dynamics  of 
charged particles  in  inhomogeneous magnetized plasma 
in  their  interactions  with  wave  packets  propagating 
transverse to the magnetic field and to the plasma density 
gradient. This approach makes it possible to consider the 
processes of particle  scattering by electromagnetic  field 
fluctuations.  Similar  problems  arise  in  the  study  of 
anomalous transport in plasmas. 

Here,  a  possible  mechanism  for  the  onset  of 
anomalous transport under the action of drift instabilities 
[1, 2] in a plasma is discussed in terms of the motion of 
individual  particles.  In  the  presence  of  multimode 
perturbations,  the  motion  of  particles  can  become 
stochastic  due  to  their  interactions  with fluctuations,  in 
which case the particle confinement in a magnetic field is 
governed  by  collisionless  diffusion  [3–7].  We  are 
interested  in  the  particle  interaction  with  moving, 
spatially localized, soliton-like fluctuations.

2. ANALYSIS OF THE PARTICLE DYNAMICS

We consider  a  two-dimensional  (r,  θ)  configuration 
that is uniform along the z-axis and in which the magnetic 
field B depends only on the radius r and is directed along 
the  z-coordinate.  We  assume  that  the  waves  are 
electrostatic and propagate along the azimuthal angle  θ. 
The components of the electric field of each wave packet 
have the form 

E
rθ

∂ ϕ
∂ θ

~
~

= − 1 , (1)

E
rr

~
~

= − ∂ ϕ
∂

. (2)

Here, the electric potential  ϕ~ is represented as a sum of 
many harmonics:
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where  s is  the  number  of  the  wave  packet,  n is  the 
azimuthal wavenumber,  ωs is the angular phase velocity 
of the packet,  gs(r) is its radial profile, and  ϕ0s,n and  ψs,n 

are  the  amplitudes  and  initial  phases  of  the  electric 
potential harmonics of the packet.

We  take  into  account  the  radial  electrostatic  field 
Er(r). Such a field can appear due to an ambipolar effect 
of the ion and electron fluxes in the plasma. Besides, the 
radial electric field (of any polarity) increases, the radial 
displacement of the particle decreases substantially and, 
accordingly,  the  radial  scale  of  the  diffusion  becomes 
shorter [6].

The particle trajectories are obtained by numerically 
solving the following equations of particle motion:
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where m and q are the mass and charge of a particle and 
vr and  vθ are the radial and azimuthal components of its 
velocity.

An important characteristic of anomalous transport is 
the radial displacement of a particle in its interaction with 
localized  fluctuations.  In  computations,  it  was assumed 
that the electric field of the wave is localized along the 
azimuthal angle θ in a sufficiently narrow region of width 
δθ.  The  maximum  potential  difference  ∆ϕ across  this 
region (or the maximum potential amplitude) satisfies the 
condition

ε ϕ= <| |e
kTe

∆ 1 , (6)

where ε is the relative amplitude of the wave potential, e 
is the charge of an electron, k is Boltzmann constant, and 
Te is the electron temperature.

The features of the particle motion under the action of 
the  low-frequency  drift  (LFD)  and  lower-hybrid  drift 
(LHD) fluctuations are shown in Figs. 1–3.

The time during which  a  particle  interacts  with  the 
electric field of a single wave packet is equal to

∆ t
u

=
δ θ , (7)

where u is the particle velocity with respect to the wave.
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Fig. 1. Radial coordinate of the particle (proton), its  
energy, and the azimuthal component of the electric field 

acting on the particle (LFD). Magnetic field at the 
plasma boundary B0=1 T, plasma radius a=0.2 m, 

magnetic field gradient dB/dr=12 T/m, ε=0.05
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Fig. 2. Radial coordinate of the particle (proton) under 
the action of LHD-waves.

B0=1 T, a=0.2 m, dB/dr=12 T/m, ε=0.1
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Fig. 3. Time dependencies of the particle energy, and the 
azimuthal component of the wave electric field acting on 

the particle during one gyroperiod
 for the condition of Fig. 2

For the case  δθ>>ρ (ρ is the cyclotron radius of the 
particle), we have u=|vph–Vdr|, where vph is the wave phase 
velocity and Vdr is the drift velocity of the particle guiding 
center. For opposite case δθ<<ρ, we have u=|vph–vθ|. 

In  the  geometry  adopted here,  the  drift  velocity  Vdr 

may be caused by both the electric field and the magnetic 
field gradient:
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During the interaction time  ∆t, a magnetized particle 
is displaced in the radial direction by a distance of about

∆ ∆ ∆r E
B

t
Bu

≈ ≈θ ϕ~
. (9)

Our numerical calculations show that estimate (9) is 
valid for both u v< < θ ,and u v~> θ . The time between the 
interactions  of  a  particle  with  two  successive  wave 
packets is equal to

τ λ
0 =

u
, (10)

where  λ is the maximum (under the conditions adopted 
here) wavelength in the electric potential spectrum (3). 
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Using relationships (9) and (10), we can estimate the 
maximum anomalous diffusion coefficient in the case of 
stochastic particle motion:
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Estimate (11) shows, in particular, that the diffusion 
coefficient  can  be  lowered  (and,  accordingly,  the 
anomalous transport can be suppressed) when |Vdr|>>vph. 
The  drift  velocity  Vdr can  be  increased  by  applying  a 
strong radial electric field, which gives rise to the E×B 
drift.

The  phase  velocity  of  the  low-frequency  waves,  as 
well as of the lower hybrid drift waves [2], is equal to

v kT
eBph

e

n
≈

δ , (12)

where δn is the radial scale of the plasma density gradient. 
For such waves, we have λ~δn. 

Using  relationships  (11)  and  (12),  fore  the  limiting 
case  |Vdr|<<vph one  can  obtain  the  Bohm-like  diffusion 
coefficient:

D r kT
eB

e( ) ≈ ε 2 . (13)

Note  that  the  confinement  time  estimated  from 
diffusion coefficient (13) coincides with that obtained in 
[3, 5] in analyzing the quasi-Hamiltonian dynamics of the 
guiding centers of the ions during their stochastic motion 
under the action of low-frequency drift waves.

3. CONCLUSIONS

In  conclusion,  we  have  analyzed  the  ion  dynamics 
under the conditions of a stochastic regime of anomalous 
diffusion.  Both  qualitative  consideration  and 
computational results allow to estimate the coefficient of 
anomalous diffusion.

We  emphasize  that  we  have  neglected  a  possible 
decrease in the oscillation amplitude  ε due to the radial 
electric  field  and  assumed  that  ε lies  in  the  range  ε
=0.01…0.1, corresponding to the experiments on different 
magnetic confinement device. Presumably, the value of ε 
should be determined from the self-consistent solution to 
the corresponding problem.

ACKNOWLEDGMENTS

This  work  was  supported  in  part  by  the  International 
Science and Technology Center, project no. 1260.

REFERENCES

1. B.B. Kadomtsev and A.V. Timofeev // Dokl. Akad. 
Nauk SSSR, 1962, v. 146, P. 581 [Sov. Phys. Dokl., 
1963, v. 7, P. 826].

2. R.C. Davidson and N.A. Krall // Nucl. Fusion, 1977, 
v. 17, P. 1313.

3. V.I.  Khvesyuk,  A.Yu.  Chirkov //  in  The  US-Japan 
Workshop  on  Physics  of  High-Beta  Plasma 
Confinement in Innovative Fusion. National Institute 
for  Fusion  Science,  Nagoya,  Japan,  1999.  Report 
NIFS-PROC-41. P. 19–26.

4. V.I. Khvesyuk, A.Yu. Chirkov, and A.A. Pshenich-
nikov // J. Plasma Fusion Res., 2000, v. 3, P. 150.

5. V.  I.  Khvesyuk  and  A.  Yu.  Chirkov  //  Fusion 
Technol., 2001, v. 39, No. 1T, P. 398.

6. V.I. Khvesyuk, A.Yu. Chirkov, and A.V. Kovalev // 
Plasma Phys. Reports., 2002, v. 28, No. 9, P. 787.

7. A.Yu. Chirkov, V.I. Khvesyuk, S.V. Ryzhkov, in 29th 

EPS  Confer.  on  Plasma  Phys.  and  Contr.  Fusion, 
Montreux, 17-21 June, 2002. // ECA, 2002, V. 26B, 
paper P-5.066.

59


	2nd Baumanskaya Str., 5, 105005 Moscow, Russia

