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1. Introduction

The experimental discovery of the transition from
the low confinement to the high confinement state,
in which the suppression of turbulence and reduc-
tion of anomalous transport was detected, open a
new page in the theory of drift wave and drift turbu-
lence in toroidal confinement systems. Experiments
have shown [1] that, together with the transition to
the improved confinement state (H-mode regime), a
tokamak plasma develops large variations in the ra-
dial electric field, and strong poloidal plasma shear
flows. The large variations are also limited to the
same small edge layer in which the velocity shear
length is found to be much less than the magnetic
shear length. In fact, the shearing rate in this re-
gion is of the order of or even larger than the typi-
cal drift wave frequency. It stands to reason, then,
that the nature and evolution of the low frequency
waves and instabilities in the edge layer will be differ-
ent from that in the plasma core, where the magnetic
shear is the primary determinant of the spatial struc-
ture and temporal evolution of these waves. Unfortu-
nately, the "ballooning transform” method ceases to
be useful for problems that involve significant shear
flow, and may be suitable only in finding the spec-
trum (and growth rates) in the limit of vanishing ve-
locity shear. Even for shearless magnetic field rigorous
treatment of the shear flow effects encounters a fatal
difficulty in the case of the finite flow shear arising
from the non-Hermitian (non-self-adjoint) properties
of the problem. The standard mode approach breaks

down, and the theory may fail to give correct pre-
diction of evolution even if the perturbation fields re-
main in the linear regime. Therefore other methods
have to be developed for the analysis of plasmas with
strong flow shear. In this report we present results of
application of new approach to the linear analysis of
low frequency turbulence of plasma with shear flow.
The drift waves and instabilities (considered on the
base of Hasegawa—Mima equation and and Hasegawa—
Wakatani system), Eta—i instability (considered on the
base of Nordman—Weiland system), Rayleigh—Taylor
instability, Alfven waves and instabilities of plasmas
with shear flow are studied as an initial value problem
without the use of spectral expansion in time. It is
shown that the conventional modal structure of these
waves and instabilities pertains only in the initial stage
of their evolution. For larger times, numerous previ-
ously overlooked non-modal effects due to the velocity
shear determined their temporal evolution. The so-
lutions for electrostatic and magnetic potentials, ion
density and temperature perturbation are obtained for
any desired finite times of the temporal evolution of
the above mentioned waves and instabilities in plasma
with homogeneous shear flow. In general these results
cannot be obtained practically with normal mode ap-
proach or on the base of the Laplace transform in time.
The assessment of the importance of these solutions
for real physical process in comparison with nonlinear
enhanced decorrelation effect is presented.

1. Drift waves in a collisional plasma with homogeneous shear flow.

On the base of the slab model of Hasegama-—
Wakatani we consider the temporal evolution of the
resistive drift wave perurbations in plasmas with ho-
mogeneous shear flow. This model is defined by the
following system of equations for the dimensionless
perturbations of electron density n, n = n/ng, and
potential ¢ = ep/T. (T, is the electron temperature,
ng is the electron background density) [2]
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a= Te/noe277”, 7 is the resistivity along the magnetic
field B || z, p? is the ion Larmor radius at the electron
temperature, vg. is the electron diamagnetic velocity.
The analysis of the case with homogeneous shear
flow, v, = const, is greatly facilitated by a transfor-
mation to the coordinates convected with the sheared
flow. This transformation is defined by the relations

r=tl=x,n=y—v(v)t=y—vjtr,z=2. (4)

In the new spatial coordinates the linearized system
(1), (2) is reduced to the equation for the potential
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Note that the equation (5) does not contain spatially
depended coefficients. Fourier transformed equation
(5) with wave numbers k; and [ conjugated with spa-
tial variables £ and 7, respectively, is found from (5)
to be
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where a dimensionless time variable T" and parameters
S and C are defined by
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In the collisionless limit (C' = 00) the electron response
is adiabatic (n = ¢) and Egs. (1), (2) are reduced
to the Hasegawa—Mima equation, which in considered
case of the homogeneous shear flow has a form
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The solution of the initial value problem for Eq.(9) is

o(r, €, / / i dIB(0,€, 1, 2)

1+ ps(l2 + k-2
1+ p21% + p2 (vh7 — k1)’

s el —ky) 10
exp | —i———— [ tan™ " ———=
V14 pi2 V14 p2i2
+tan! 7]4103
V14 p2l2

For small 7 (7 < (vg) ") solution (10) gives the triv-
ial result ¢(7,&,m, k.) = #(0,&,m, k) exp —iwg.T with
Wae = Wge [1 +p2(1% + k’i)]_ As 7 becomes large
we find from equation (10) zero frequency convec-
tive cell-type solution with decaying as 72 ampli-
tude. Therefore normal mode solution of the form
¢ = ¢(x)exp (iky +ik,z —iwt) is not the steady—
state limit for the initial value problem considered.

The evolution in time of the initial disturbance of
the wave packet form shows the existence of the stag-
nation level in both ¢ and 7 directions. Flow shear
leads to the vanishing of the group velocity compo-
nents with time.

In the case of the semiinfinite homogeneous shear
flow, which occupies the region > 0 with boundary

conditions ¢ (1, = 0,y) = ¢(7,y); (0¢/0x) o

dj’ (1,y) the forced oscillations defined by boundary
condition have temporal evolution different from de-
termined by equation(10) [9]. In that case we re-
ceive the following equation for the perturbed poten-
tial ¢ (1, k,1):
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where the term @ (7,1) is defined by the boundary con-
ditions at x = 0 and is equal to
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In the case of sufficiently strong flow shear , which
is observed on the plasma edge, where v, = lvde, even
for sufficiently small times 7 that solution may be ap-
proximately presented in the form
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It is followed from this solution that in plasma with
strong velocity shear the initial perturbations in shear
flow decays as t~2. At the same time the oscillations
of plasma , which are excited out of the shear flow
and determined by the boundary conditions, decays
as t~! in the region & > 0. Therefore the oscillations
observed in shear flow may have as their source the
inner parts of plasma.

Much more complicated solutions has the equa-
tion (7). The asymptotical forms of these solutions
were obtained in [2] in two extremes: C' > 1 and
C < 1. In both cases solutions display strongly non—
modal forms with complicate time dependencies. It
was obtained that in the case C' > S2Ip, > 1 the non-
modal effects of the potential evolution becomes es-
sential at the time moments considerably earlier than
the inverse growth rate time and normal-mode ap-
proach in this case is not applicable. Blocking the
wave packets at their stagnation levels and the ul-
timate transformation of drift waves into convective
cells are the intrinsic properties of this evolution. In
the case of weak shear, when S2%lp, > C > 1 non-
modal effects of the amplitude evolution will appear
after the long period of the exponential growth of the
drift wave amplitude, when nonlinear effects may be-
come more essential. In the limit of C' <« 1 the so-
lution of the equation (7) in times T > (Ips)~! is of
the power—like form, ¢(T) = A1T* + AsT*2, and in
the times T > Slp,, S > 1 it decays as T~2. In the



laboratory frame the frequency and wave numbers are
time dependent, k,(7) = ki — lvgr, ky = Lk, = k..
These non-modal time dependencies of the frequency

and wave numbers might lead to the broad shape of
the spectral line of the drift waves—type perturbations
that is not associated with strong turbulence effects.

Toroidal ion temperature gradient driven instability in plasma with shear flow.

The basic linear dynamics of the toroidal 7; in-
stability is described by the system of equations for
the electrostatic potential ¢ and ion temperature 67;
perturbations [3]. In the variables, determined by the
relations (4) these equations are reduced to the follow-
ing single equation for the potential ¢ [4]:
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where dimensionless time 7" = v{t—k/l and dimension-
less parameter S = lvg/v} are introduced. There is a
significant amount of experimental data (see for exam-
ple [1]) showing that v is comparable to the growth
rate Ymax prior the formation of the transport barrier
and significantly exceeds it after formation. Because
the growth rate ~y is less than the drift frequency lvg
the L to H transition occurs in the conditions of the

weak flow shear, when S > 1. It was obtained in ref.[4]
that the linear stabilization of the toroidal n; mode by
shear flow in the case v ~ v{ may be dominant only
for the narrow part of the poloidal wave number spec-
trum. The main part of the 7; -mode spectrum will
be stabilized due to the nonlinear deccorrelation ef-
fect, for which it is sufficient to have v{, ~ 7. After the
formation of the transport barrier shearing rate signifi-
cantly exceeds across the whole minor radius the maxi-
mum linear growth of all unstable modes in the plasma
[1]. Shearing rate is extremely strong at the plasma
edge where it exceeds even the drift wave frequency
[1]. In this case S < 1 and because of the condition
vy > 7 non-modal effects will define the temporal evo-
lution of any plasma perturbations in the edge layer
and therefore the stability of the edge layer, in times
less than the inverse growth rate of linear instabilities
without velocity shear. The solutions of the equation
(14) obtained for the asymptotical limit of small S < 1
in ref.[4] show that in edge layer with strong flow shear
any disturbances are stable against the toroidal n; in-
stability. From these solutions it follows, that a wave
packet will be stagnated in the strong flow shear re-
gion or will has a group velocity growing with time and
will direct into the region opposite to the direction of
the gradient of flow velocity. Therefore the region of
strong flow shear with dEy(z)/dx < 0 is a barrier for
the outward radial transport of the perturbations of
the potential ¢ and ion temperature in the case when
this region joins to inner part of plasma. It is just
the case which was observed in edge layer of D III-D
tokamak [1]

Temporal evolution of drift—Alfvén instabilities

It is well known that in shearless case inhomo-
geneous plasma with hot ions is unstable against the
hydrodynamic and resistive drift—Alfven instabilities
[5] . The governing equations for these instabilities
are the equations for the longitudinal motion of elec-
trons, for the quasineutrality of the current density,
and for the perturbations of the electron pressure p,
and ion pressure p;. In the drift approximation, the
system of equations reduces to the system for the par-
allel component of the perturbed magnetic potential
le, the electrostatic potential ¢, and for j. and 7;[6].
In ref.[7] the effect of flow shear on the temporal evo-
lution of these instabilities in the regime of weak flow
shear, which corresponds to the stage of the period of
the low-to-high (L—H) transition, and in the regime of
strong flow shear, which corresponds to the stage of
the developed transport barriers was considered sepa-
rately.

It was obtained in [7] that in low pressure plasma
with 8 < m,/me and cold ions the flow shear has fun-
damentally altered the modal time behaviour from the
conventional to a power—like time dependence of the
spatial Fourier harmonic of the perturbed potentials:
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An algebraic decay is imposed with the magnetic po-

tential decaying more rapidly with time than the elec-

trostatic potential. This feature — the different time

dependence of different perturbations in a linear sys-

tem, is a strictly non—modal element introduced by
the velocity shear.

It was found in [7] that for a plasma with finite



pressure (m./m; < [ < 1) and cold ions Alfvén
waves in their “classical” modal form (with thermal
corrections),

$1,2(T) = exp {iikHvAT (14 (kT +17) pg)%} , (17)

will exist only within the time interval 0 < 7 < (vj)~*
(IT| < 1), i.e., for physical times less than the inverse
of the shearing rate. In the next well-defined time
interval

1< T < (lp)™ ", (18)

the Alfvén waves begin to acquire the non-modal
slow—decay imposed on a modal form,

P12 ~ %exp (£iST) . (19)

This mixture of the modal and non-modal behaviour
continues in the interval
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is characterized by a ”frequency” increasing linearly
with time. Finally, for asymptotic times (for times
larger than the various ”times” in the problem),
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corresponds to an algebraically decaying but oscillat-

ing mode. In the ultimate stage, the wave that began
as an ordinary Alfvén wave ends up propagating with

(22)

the solution
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the electron thermal speed vp.. This metamorphosis
is due to the finite electron mass effect which is usu-
ally omitted in the study of Alfvén waves in a plasma
with finite pressure, 8 > m,/m;. Through the agency
of the shear which transfers energy between differ-
ent wave numbers (in particular induces upward cas-
cading), this normally neglected term becomes dom-
inant for large enough times when the effective wave
numbers become large. Since the waves propagating
with the the electron thermal speed will be subject to
strong electron Landau damping, the flow shear may
become a rather effective mechanism for damping the
Alfven or Drift—-Alfven waves in the shear—layer of the
high-confinement tokamak discharges; the shear con-
nects the wave (which may be growing) to the highly
damped part of the spectrum causing it to ultimately
decay. Needless to say that for these conditions a
kinetic description for the Alfvén wave evolution be-
comes necessary.

In plasma with hot ions hydrodynamic drift—
Alfvén and resistive drift—Alfvén instabilities may be
developed. For the regimes of low flow shear, which
corresponds to the period of the low—to—high transi-
tion, the non—modal effects may actually control the
temporal evolution of instabilities on time scales less
than the their inverse growth rates. However the long
time evolution of these instabilities as well as their sat-
uration are determined by the nonlinear effects such
as the nonlinear decorrelation effect. In contrast, the
plasma with strong flow shear, which correspond to
the regime of the developed transport barriers [1], is
stable against the development hydrodynamic drift—
Alfvén and resistive drift—Alfvén instabilities. For
plasma with hot ions (T; < T,) , the frequency of the
electron drift wave ultimately reduces to the frequency
of the ion drift wave, lvg;. The drift-wave transforma-
tion into a convective cell with zero frequency and an
amplitude decaying as 1/t? seems to be an inherent
property of the temporal evolution of the drift mode
in a plasma with cold ions [7]

Rayleigh—Taylor instability in plasma with homogeneous shear flow

In paper [8] the temporal evolution of the
Raleigth—Taylor instability of plasma with shear flow
was considered.The governing equations of the prob-
lem considered are the equation for the quasineutral-
ity of the current density and the continuity equation
for electrons. In the drift approximation the system of
equations for the flute perturbations in the case of cold
ions, T; — 0, but for the finite electron temperature,
T., reduces to the following system for the perturbed
electrostatic potential ¢ and for the perturbation of
the electron density n
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where velocity V is determined by equation (3). The
solution of the equations (24)—(25) was obtained per-
turbatively as an expansion in powers of the initial
values of the perturbation of the electrostatic poten-
tial,

¢ (ka [ T) = ¢(1) (kv l7 T)
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For the times T in the interval 1 < T' < (Ips) 1,
where the shear flow effects become important, the



linear solution ¢(1)(7’) in this interval is
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It was shown that flow shear leads to the linear
damping of electrostatic potential when the condition
(1/v/2)v0 < |v}] holds. This condition however is in-
sufficient for the suppressing of the nonlinearly excited
perturbations. It is obtained that in the range of the
velocity shear (1/v/2)yy < vf < (2/v/3)7y0 nonlinearly
excited perturbation of potential ¢,
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grows algebraically. For v} > (2/v/3)70 nonlinear per-
turbations ¢3) also will be damped, but the nonlin-
early excited potential ¢s),

b@) (k,1,T) ~ exp (ZSZT) T3 =4 (31)
will grow. The damping of the potential ¢3) needs
more severe condition for flow shear parameter v,
which is determined by the condition |vj| > (6/4)70.
This condition admits the nonlinear growth of the po-
tential ¢ 4),

bay (k1. T) ~ exp (SQT) TS (32)
This growth will be suppressed when the condition
|vh| > 4/+/570 is fulfilled. Clearly that the suppression
of the nonlinear perturbations of potential ¢;) of more
higher order, ¢ > 5, will demand even more strong flow
shear. This damping of the nonlinearly excited per-
turbations, as well as linear ones is non-modal effect
which appeared in times ¢ > (v}) . This effect will
be appreciable for the instability evolution, when this
time is comparable with inverse growth rate, i.e. for
v4 ~ 0. So even under above conditions the suppres-
sion of the perturbation of the electrostatic potential
by flow shear may be real physical process in cases
when the terms of the order of O(C} ,(k,1)) and of
higher order may be safely omitted. At the same time
perturbation of the electron density n does not sup-
pressed by flow shear on the interval 1 < T' < (Ip,) L.
In times T > (Ips)” " potential oscillates with fre-
quency lvge and with decaying with time as 772 am-
plitude and linear perturbation of the electron density
evolves as e!VRe™ with the amplitude which stays con-
stant for these times.

Obtained non—modal solutions appear in times
T > 1 or for dimensional time ¢ > v and obviously
absent in shearless case. The above condition for the
stabilization of the linear RT instability and the con-
dition ¢ > v, give vt ~ 1. That means that for shear
flow with (1/v/2)yo < |vj| the non-modal solution of
the algebraic form is settled in time of the order of the
inverse growth rate. For this case any nonlinear pro-
cesses with modal solutions can’t develop. In the case
of more weaker shear the non-modal solutions also
may be developed, but in times which are much more
longer then the inverse growth rate. In that case prior
the development of such non-modal solutions nonlin-
ear modal processes will define the development of the
RT instability. So the condition (1/v2)y, < |vf] ,
as well as the other limitations on v obtained look
like as the bifurcation conditions, which lead to the
principally different non—-modal linear and nonlinear
evolution of the RT instability.

At the condition v{, ~ 7o the Rayleigh-Taylor in-
stability may be stabilized also due to the enhanced
by shear flow nonlinear decorrelation effect. The above
analysis shows, that in the case of the RT instability
the theory of the nonlinear decorrelation effect have
to include the non-modal development of the poten-
tial and density perturbations and may be developed
on the base of the non—sine type solutions (24), (27),
(28), (29) for the electrostatic potential perturbations.

Conclusions.

The above results show, that in times of the or-
der of the inverse velocity shear parameter, (vj)~?,
the drift-like waves and instabilities in plasma with
shear flow develop as a non-modal formations with
time dependent wave numbers and frequencies. The
stagnation and reflection by shear flow the wave pack-
ets of these perturbations may result in the reduc-
ing the anomalous transport of particles and energy
in the regions of plasma with sufficiently strong veloc-
ity shear.
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