© 2009 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 42.40.Eq, 42.40.Ht, 42.40.Lx, 42.40.Pa, 42.70.Jk, 42.70.Ln, 82.35.Np

Утворення наночастинок срібла в полімерній матриці при формуванні періодичних структур голографічною методою

Л. М. Кохтич, Т. М. Смірнова, О. С. Куценко^{*}

Інститут фізики НАН України, просп. Науки, 46, 03028 Київ, Україна *Інститут фізичної хімії ім. Л. В. Писаржевського НАН України, просп. Науки, 31, 03028 Київ, Україна

Методою синтези *in situ* одержано об'ємні періодичні структури полімернаночастинки срібла з просторовим періодом 0,4-1 мкм. Фотовідновлення наночастинок провадиться в утвореній голографічною методою періодичній структурі полімер-розчин AgNO₃. Незворотній перерозподіл компонент у процесі полімеризації забезпечує довготривалу стабільність одержаних структур. Розмір наночастинок не перевищує 10 нм. Періодичні структури товщиною 10-50 мкм характеризуються високим пропусканням > 80% у спектральному діяпазоні 550–1000 нм та низьким рівнем світлорозсіяння. Досліджено дифракційні та оптичні властивості одержаних структур.

Polymer–Ag nanoparticles bulk periodic structures with spatial period of 0.4–1 µm are obtained by *in situ* synthesis method. Nanoparticles photoreduction is carried out in periodic structure polymer–AgNO₃ solution obtained by holographic method. Irreversible redistribution of components in polymerization process provides a long-time stability of obtained structures. The nanoparticle size does not exceed 10 nm. Periodic structures 10–50 µm in thickness possess high transparency (>80%) and low light-scattering level in the spectral range of 550–1000 nm. Diffraction and optical properties of obtained structures are investigated.

Методом синтеза *in situ* получены объемные пространственные структуры полимер-наночастицы серебра с пространственным периодом 0,4–1 мкм. Фотовосстановление наночастиц проводится в образованной голографическим способом периодической структуре полимер-раствор AgNO₃. Необратимое диффузионное перераспределение компонент в процессе полимеризации обеспечивает долговременную стабильность полученных структур. Размер наночастиц не превышает 10 нм. Пространственные структуры толщи-

479

ной 10–50 мкм характеризуются высоким пропусканием >80% в спектральном диапазоне 550–1000 нм, а также низким уровнем светорассеяния. Исследованы дифракционные и оптические свойства таких структур.

Ключові слова: органо-неорганічні нанокомпозити, фотовідновлення наночастинок срібла, періодичні структури, дифракційна ґратниця, полімерозаційноздатна композиція.

(Отримано 12 листопада 2008 р.)

1. ВСТУП

Синтеза та вивчення наночастинок металу, розподілених в полімерній матриці, привертають особливу увагу в сучасній науці та технології. Метали в ультрадисперсному стані мають унікальні оптичні властивості у видимому спектральному діяпазоні [1]. Інтерес до наночастинок срібла перш за все пов'язаний з їхньою властивістю ефективно взаємодіяти з квантами світла із-за виникаючого на їх поверхні плазмонного резонансу — колективних коливань електронів провідности. Нанокомпозитні матеріяли, які складаються з наночастинок металу, введених у полімери, поєднують дифракційні властивості зі специфічними властивостями наночастинок, що відкриває нові можливості їх практичного використання [2].

2. МЕТОДИКА ЕКСПЕРИМЕНТУ

Серед різних метод формування просторово періодичних структур голографічна фотополімеризація є найбільш простим і дешевим одностадійним способом одержання 1D-, 2D- й 3D-структур з великою площею й високим ступенем однорідности [3]. Для формування періодичних структур з наночастинками, в даній роботі ми використовуємо методу, де впорядковані структури з наночастинок срібла формуються при експозиції в інтерференційному полі в результаті фотохемічної реакції синтези з металевого прекурсору, введеного в мономерну композицію, на противагу підходу, запропонованому в роботах [4-6], в якому вихідні полімеризаційноздатні композиції містять синтезовані наночастинки (ex situ синтеза). Застосування дифузного механізму перерозподілу компонент суміші, з подальшим фото- та термовідновленням срібла дає змогу одержувати об'ємні періодичні структури, які характеризуються високою стабільністю у порівнянні з [7], де методою фотовідновлення в інтерференційному полі були одержані рельєфні структури.

Для одержання періодичної структури використовувалась стандартна схема голографічного запису в побіжних жмутах, яка дозволяла формувати дифракційні ґратниці пропускного типу з фазови-

480

ми площинами перпендикулярними поверхні [8]. Просторова частота ґратниці задавалась кутом сходження записуючих жмутів аргонового лазера з довжиною хвилі 488 нм. Кінетика формування періодичної структури контролювалась жмутом гелій — неонового лазера з $\lambda = 633$ нм, спрямованим на ґратницю під Бреґтовим кутом, в результаті чого вимірювалась інтенсивність дифрагованого ($I_{диф}$) та прохідного ($I_{пр}$) жмутів. Її дифракційна ефективність (η) визначалась як:

$$\eta(t) = I_{\mu \mu \phi} / (I_{\mu \mu \phi} + I_{\mu \rho}).$$

При такій оцінці виключаються Френелеві втрати в підложжях, розсіяне світло та лінійне вбирання шару.

Вибір компонент композиції базується на дослідженнях голографічних фотополімерів, що містять полімеризаційноздатні сполуки (мономери, олігомери) та інертні компоненти [9–10]. Вихідна полімеризаційноздатна композиція представляє собою трикомпонентну суміш акрилових мономерів з ініціятором фотополімеризації та нейтральну компоненту, яка є розчином нітрату срібла в ацетонітрилі. Для формування реєструючого шару композиція розміщувалась між двома скляними підкладками розділеними каліброваними тефлоновими прокладеннями, товщина яких складала від 10 нм до 50 нм.

3. РЕЗУЛЬТАТИ ЕКСПЕРИМЕНТУ ТА ЇХ ОБГОВОРЕННЯ

Під впливом інтерференційного поля відбувається дифузний перерозподіл компонент суміші, внаслідок чого формується об'ємна дифракційна ґратниця (рис. 1, *a*), неопромінені області якої збагачуються металевим прекурсором. Амплітуда модуляції показника заломлення періодичної структури визначається ріжницею показників заломлення середовища в освітлених й неосвітлених областях:

$$n_1 \cong rac{1}{2} \Big| (n_\Pi - n_{
m HK}) (v_{
m HK}^{
m max} - v_{
m HK}^{
m min}) \Big|,$$

де n_{Π} і n_{HK} — показник заломлення полімеру і нейтральної компоненти; v_{HK}^{max} , v_{HK}^{min} — об'ємні частки нейтральної компоненти в освітлених та неосвітлених областях відповідно.

На рисунку 2 наведені залежності дифракційної ефективности ґратниці від кута зчитування (криві кутової селективности). Крива 1 описує кутову селективність одержаної ґратниці зразу після запису. Внаслідок подальшої дії лазерного опромінення, в областях, збагачених прекурсором, починається процес відновлення наночастинок срібла. Це підтверджується появою плазмонного резонансу в околі 450 нм, що видно з рис. 3, крива 2, де представлено спектр

Рис. 1. Схема формування ґратниці: перерозподіл компонент суміші під дією інтерференційного поля (*a*), утворення наночастинок срібла (б); — молекуля мономера; —— молекуля полімеру; ④— нітрат срібла, розчинений в ацетонітрилі; ●— наночастинка срібла.

Рис. 2. Кутова селективність ґратниці (η як функція кута зчитування), записаної на композиції, яка містить 2 ваг.% AgNO₃ з періодом $\Lambda = 0,4$ мкм: 1 — після голографічного запису; 2 — після видалення CH₃CN; 3 після оброблення: трикутниками позначені експериментальні дані, лінією — крива, що відповідає теорії зв'язаних хвиль.

вбирання періодичної структури після голографічного запису. Смуга з максимумом вбирання в околі $\lambda \approx 360$ нм відноситься до ініціатора фотополімеризації (рис 3, крива 1), інтенсивність якої зменшується в результаті опромінення інтерференційним полем в процесі голографічного запису (рис 3, крива 2).

Згідно сучасних поглядів [11], процес синтези наночастинок срібла у розчині мономеру з сіллю срібла та відновником проходить стадію відновлення Ag^+ , утворення кластерів Ag_x та збільшення ро-

змірів наночастинок срібла при об'єднанні кластерів у великі аґреґати (наприклад, НЧ Аg діяметром близько 10 нм). Аналіза механізму та впливу окремих складових композиції на фото- та термовідновлення Ag⁺ потребує окремого дослідження.

Подальше видалення розчинника з ґратниці (для чого видалялась одна з скляних підкладок, оброблена антиадгезіном) призводило до значного зменшення її $\eta(t)$ (рис. 2, крива 2), що зумовлено зменшенням ріжниці показників заломлення в сусідніх областях періодичної структури.

Подальше температурне оброблення зразків (при $T = 75^{\circ}$ С, протягом 2 год.) сприяло підвищенню ефективности утворення наночастинок в неопромінених інтерференційним полем областях (рис. 1, δ). Це призводило до збільшення амплітуди модуляції показника заломлення (n_1) та значного збільшення дифракційної ефективности $\eta(t)$ ґратниці (рис. 2, крива 3). Дане припущення підтверджується зростанням вбирання в області максимуму плазмонного резонансу (рис. 3, крива 2). Внаслідок оброблення спостерігалось зменшення товщини (d) зразків, яке пов'язане з вивільненням ацетонітрилу, величина якого складала 30-40%. Слід відмітити, що подальше довготривале опромінення дифракційної ґратниці УФ-випроміненням не призводило до зміни її параметрів.

Існування періодичного розподілу наночастинок в полімерній матриці підтверджено електронно-мікроскопічними дослідженнями одержаних структур. На рисунку 4 продемонстровано розподіл наночастинок в штрихах дифракційної ґратниці, з якого можна оцінити розмір наночастинок, що не перевищує 10 нм. Експериментально виміряна кутова селективність одержаної періодичної структури (рис. 2, крива 3) добре описується формулою Когельника [12] для дифракційної ефективности товстої фазової голограми. Хороша узгодженість з теорією дає можливість застосовувати фор-

Рис. 3. Спектр вбирання зразка: *1* — вихідної фотополімеризаційноздатної композиції; *2* — після голографічного запису; *3* — після оброблення.

Рис. 4. Розподіл наночастинок в штрихах дифракційної ґратниці — а; б — збільшене зображення.

ТАБЛИЦЯ. Зміна параметрів періодичних структур при формуванні наночастинок срібла.

пері- од, мкм	n ₁ , після запи- су	η, %, після запи- су	<i>d</i> , мкм після запи- су	<i>n</i> ₁ , після видален- ня CH ₃ CN	η, %, після ви- далення CH ₃ CN	d, мкм після об- роблення	<i>п</i> ₁ , після оброблен- ня	η, %, піс- ля оброб- лення
0,4	0,0039	47	34	0,0016	4	22	0,0065	51
0,9	0,0074	56	22	0,0012	3	13	0,01	40

Примітка. * — температура прогріву складала 75°С.

мулу Когельника для розрахунку величин n_1 і d:

$$n_1 = \lambda_t \cos \theta_B \arcsin \sqrt{\eta / \pi d}, \qquad (2)$$

де θ_B —Бреґґів кут в середовищі; λ_t — довжина хвилі тестуючого жмута в повітрі.

Одержані результати наведено в табл. Як видно з таблиці, для різних просторових частот дифракційних ґратниць також має місце вищенаведена поведінка відповідних величин, а саме $\eta(t)$, d, n_1 . Спостерігається зменшення товщини зразків. При цьому $\eta(t)$ ґратниць збільшується, перевищуючи вихідне значення. Відповідно зростає амплітуда модуляції показника заломлення, максимальне значення якого майже вдвічі перевищує вихідне, що також вказує на утворення ультрадисперсного срібла.

Однією з важливих вимог до подібного структурування є високий вміст концентрації наночастинок, тому ми збільшували концентрацію нітрату срібла. Як видно з рис. 5, при збільшенні концентрації металевого прекурсору до 3 ваг.% спостерігається зменшення результуючого значення величини η до 5%, а також зниження ефективности відновлення наночастинок. Тому оптимальною є конце-

Рис. 5. Кінетичні залежності формування ґратниць з різними концентраціями нітрату срібла з $\Lambda = 0,9$ мкм, d = 10 мкм: 1 — мономерна суміш; 2 - 1 ваг.% Ag NO₃; 3 - 2 ваг.% Ag NO₃; 4 - 3 ваг.% Ag NO₃.

нтрація в 2 ваг.%.

Кінетична залежність формування дифракційних ґратниць, де спостерігається швидкий ріст $\eta(t)$ із наступним монотонним зменшенням величини η до стаціонарного значення, є типовою для багатьох фотополімерних матеріялів з нейтральною компонентою [13], показник заломлення якої менший за величину показника заломлення полімеру. Полімеризація в освітлених областях та витіснення нейтральної компоненти в неосвітлені області призводить до формування періодичної структури, n_1 якої визначається ріжницею показників заломлення полімеру та суміші мономера з нейтральною компонентою. Подальше формування полімеру в неосвітлених областях зменшує n_1 , тому що показник заломлення полімеру перевищує величину показника заломлення мономера.

4. ВИСНОВКИ

Розроблено фотополімеризаційноздатну композицію, яка забезпечує об'ємний дифузний перерозподіл мономерної складової та прекурсору. В результаті фотохемічної реакції синтези наночастинок з металевого прекурсору, розподіленого в полімерній матриці, нами одержано стабільні періодичні структури полімер-наночастинки Ag товщиною до 50 мкм з просторовим періодом 0,4-1 мкм та максимальною амплітудою модуляції показника заломлення $n_1 = 0,01$. Розмір наночастинок не перевищує 10 нм.

Проведено дослідження дифракційних та оптичних властивостей одержаних структур. Дифракційні ґратниці з максимальним значенням величини $\eta = 60\%$ характеризуються високим пропусканням > 80% в спектральному діяпазоні 550–1000 нм та низьким рівнем світлорозсіювання.

Для вибраної композиції, при інтенсивності інтерференційного поля 0,5 мВт/см², час експонування не перевищує 5 хв.

Періодично впорядковані структури можуть знайти використання в багатьох застосуваннях, наприклад, використовуватись в якости резонаторів з оберненим зв'язком, в якости нелінійних дифракційних елементів для керування світлом, в хвилеводних лазерах та ін.

Роботу виконано при підтримці ґранту Національної академії наук України (10/07-Н) в рамках програми «Наноструктурні системи, наноматеріали, нанотехнології» наукового проєкту «Нанофізика матеріалів електронної техніки».

ЦИТОВАНА ЛІТЕРАТУРА

- 1. U. Kreibig and M. Vollmer, *Optical Properties of Metal Clusters* (Berlin: Springer: 1995).
- С. П. Губин, Г. Ю. Юрков, Н. А. Катаева, *Неорганические материалы*, 41, № 10: 1159 (2005).
- 3. R. A. Vaia, C. L. Dennis, L. V. Natarajian, V. P. Tondiglia, D. W. Tomlin, and T. J.Bunning, *Adv. Mater.*, **13**, No. 20: 1570 (2001).
- 4. N. Suzuki, Y. Tomita, and T. Kojima, *Appl. Phys. Lett.*, **81**: 4121 (2002).
- 5. C. Sanchez, M. J. Escuti, C. van Heesch Bastiaansen, D. J. Broer, J. Loos, and R. Nussbaumer, *Adv. Fun. Mater.*, **15**: 1623 (2005).
- O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, Nanotechnology, 18: 105704 (2007).
- 7. K. Kaneko and H. Sun, Appl. Phys. Lett., 83, No. 7: 1426 (2003).
- 8. T. N. Smirnova, O. V. Sakhno, V. I. Bezrodnyi, and J. Stumpe, *J. Appl. Phys. B*, 80: 947 (2005).
- 9. Э. С. Гюльназаров, Т. Н. Смирнова, Е.О. Тихонов, Оптика и спектр., 67, № 1:175 (1989).
- А. А. Акаев, С. Б. Гуревич, К. М. Жумалиев, Л. И. Муравский, Т. Н. Смирнова, Голография и оптическая обработка информации (Бишкек: Учкун: 2003).
- Ю. А. Крутяков, А. А. Кудринский, А. Ю. Оленин, Г. В. Лисичкин, Успехи химии, 3: 242 (2008).
- 12. H. Kogelnik, Bell Syst. Tech. J., 48: 2909 (1969).
- Т. Н. Смирнова, Голографическая запись на фотополимерах: механизмы и режимы записи, дифракционные свойства голографических решеток (Дисс. ... докт. физ.-мат. наук) (Киев: 2001).