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In comparison with classical Lifshitz—Slyozov—Wagner’s theory and, where
it is possible, with available experimental data, the physical kinetics of evo-
lution of a microstructure of f.c.c.-Ni—Fe alloys is simulated by means of the
Onsager-type equations of microdiffusion and with the account of the effects
caused by magnetic interatomic interactions and elastic interactions of inclu-
sions of phases. Magnetism proper in f.c.c.-Ni—Fe alloys essentially influ-
ences a tendency to atomic ordering and development of their microstruc-
ture; magnetic interactions promote stabilisation of a precipitated phase and
dilate an interval of two-phase coexistence. In Elinvar alloys, elastic interac-
tions essentially change morphology of an intermixture of formed phases of
the superstructural L1, and L1, types (or of structural Al type), giving the
anisotropic character to the shape of inclusions of phases as well as to their
relative spatial arrangement. Meanwhile, for an intermixture of phases of
structural A1 type and superstructural L1, type in Permalloys, the aniso-
tropic effects of such interactions are inappreciable.

Y mopiBHAHHI 3 KIacuuHOoO Teopiero Jlipmumna—Ciaro3oBa—Baruepa i, me Mo-
JKJIWBO, 3 HAABHUMHU €KCIIEPUMEHTAJbHUMU TaHUMU 3MOJeJbOBAaHO (hisnmuHy
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KimetTury eBoamoIii MmikpoctpykTypu cromie I'IIK-Ni—Fe 3a momomoroio pis-
HaHb Mikpoaudysii OHcarepoBoro Tumy Ta 3 ypaxyBaHHAM e(deKTiB, CIIPUUU-
HEeHNX MarHeTHUMU MiKaTOMOBMMU B3aEMOIiAME Ta NPYKHIMU B3a€EMOIiAMU
BKpatLieHb ¢pas. Baactusuii cromam I'IIK-Ni—Fe maraeTusm icTOTHO BIJIUBA€E
Ha TEHJEHILiI0 10 aTOMOBOT'O BIIOPAAKYBaHHA Ta PO3BUTOK IXHBOI MiKPOCTPYK-
TypH: MarHeTHi B3aeMoil cupuAOTh crabdimrizamii ¢asu, 1o BugijsgeTsesd, Ta
POSIINPIOIOTH iHTepBaJ ciiBicHyBaHHA (a3 napamu. IIpyxHi sk B3aemogii ic-
TOTHO 3MiHIOIOTh MOP(OJIOTiI0 cyMillli yTBopeHuX a3 HAACTPYKTYPHOTO TUITY
L1,i L1, (abo cTpykTypHOro Tuny Al) B eIliHBapHUX CTOIIaX, HAAAIOUM aHi30T-
POIIHOT'0 XapakTepy AK (popMi BKpanjaeHb (a3, Tak i IXHbOMY B3a€EMHOMY DPO3-
TAITyBaHHIO; aJie IJdA cyMiIri ¢as cTpyKTypHOro Tuiny Al Ta HaJCTPYKTYPHOTO
Tuny L1, B mepMaoax aHi30TPONHI epeKTH TaKUX B3BaEMOJili € HESHAUHUMMU.

B cpaBHeHMU ¢ Kiaccuueckoil Teopueit JIudimuia—Ciaésosa—Baruepa u, rae
BO3BMOJKHO, C UMEIOITUMUCA SKCIEPUMEHTAIbHBIMY JaHHBIMY CMOZEJINPOBaHA
dusmueckas KMHETHUKA JBOJIIONUN MUKPOCTPYKTYpHI ciiaBoB I'IIK-Ni—Fe c
TIOMOIIIBIO YPaBHEHUH MUKPOAU(MGY3UU OHCATEPOBCKOTO TUIIA U C YIETOM 3(-
($eKTOB, BBLI3BBAHHBIX MATHUTHBIMU MEYKATOMHBLIMHM B3aWUMOAENCTBUAMU U
YOPYTUMU B3auUMOeHCTBUAMU BKJOUeHUi ¢as. IIpucymuit cniasam I'IIK-
Ni—Fe marHeTusm CyIIleCTBEHHBIM 00Pa30M BJIMUSAET HA TEHIEHIINIO K aTOMHO-
MY YIOPATOUYEHUIO U PA3BUTHE UX MUKPOCTPYKTYPhI: MAarHUTHBIE B3AUMOAEH -
CTBUSA CIIOCOOCTBYIOT CTabMau3anuu (asbl, KOTOpPas BHIAEIAETCS, U PacCIIu-
PAIOT MHTEPBAJI IOMAPHOTO COCYIllecTBOBaHUA (hasd. YIpyrue ke B3amMOJEM-
CTBUS CYIIIECTBEHHBIM 00pa3soM M3MEHAIOT MOP(OJIOTHI0 cMecu 00pPa3s0BaHHBIX
das ceepxcTpykTypHOTO Tna L1, u L1, (unu cTpyKTypHOTro tuna Al) B aauH-
BapHBIX CILIaBaX, IPUAABas aHU30TPOIHBIA XapakTep, KakK (opMe BKJIIOUE-
HUui a3, TaK ¥ X B3AUMHOMY PACIOJIOKEHUI0, HO s cMecu (a3 CTPYKTYD-
Horo Tna Al u cBepXCTPYKTypHOTO Tuma L1, B mepMaLIoaxXx aHU30TPOIHBIE
9 HEKTHI TAKUX B3AUMOIEUCTBUHN ABIAIOTCA HE3HAUNTEIbHBIMHU.
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1.INTRODUCTION

Ni—Fe alloys are well known as widely used materials in up-to-date in-
dustrial and technological applications due to their inimitable physical
properties (low thermal expansion, unique elastic properties, high
permeability, and low coercive force), the majority of which is formed
due to the coexistence and significant mutual influence of magnetic
and spatial atomic orders. From the experimentally observed phase di-
agram (that is ‘metastable’ in fact; Fig. 1), one can notice that the tem-
perature decrease leads to the following sequential phase transfor-
mations: the 2"%-order paramagnetic—ferromagnetic phase transition
and the 1¥"-order (dis)order—order phase transformations. Depending
on the Fe (Ni) concentration (cp, (cy;)) and the external conditions (tem-
perature (T), pressure (p), magnetic field (B), etc.), the latter results in
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Fig. 1. Experimentally obtained ‘metastable’ phase diagram of Ni—Fe alloys
(according to Ref. [2]). The symbol ‘?’ denotes the unidentified authentically
structural and/or magnetic states of the alloys at issue. y-Fe, o-Fe and d-Fe
are the f.c.c., low- and high-temperature b.c.c. lattice-based modifications of
an iron. L is the Ni—Fe liquid solution. The equilibrium crystal structures of
the three stoichiometric ordered phases at T=0K, L1,-NijFe (Permalloy),
L1,-NiFe (Elinvar) and L1,-NiFe, (Invar), are also shown (right-to-left).

the formation of the ordered alloys with substitutional f.c.c. L1,-type
(super)structures (which are experimentally observed for NisFe stoi-
chiometry and theoretically proposed for NiFe;) or f.c.c. L1,-type ones
(e.g., for NiFe) from the disordered solid solutions of f.c.c.-A1 type
(characterized by the short-range atomic order only) [1, 2]. The inter-
play between the magnetic and structural orders becomes apparent
when studying the ordering processes in these alloys. Notably, the
magnetic nature of the alloy components promotes the atomic ordering
and the formation of the ordered (super)structures mentioned above.
Moreover, in the magnetic state of an alloy, the (Kurnakov) ordering
temperatures, Tx(cy.), are enhanced (for example, see Refs. [3—6]). In
turn, as was shown previously [5—8], the Curie temperature, T¢(cg.), of
the ordered alloys also increases, comparing to the disordered ones (in-
cluding the alloys with a short-range atomic order), e.g., for NiFe-type
Elinvar and Nis;Fe-type Permalloy alloys, the excess is about 100—-200
K and 100 K, respectively. Therefore, the theoretical investigation of
magnetic and atomic order effects in these alloys becomes an im-
portant part of deeper understanding a variety of physical phenomena.

In spite of number of works (see, e.g., Refs. [9, 10] and references
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therein) devoted to the study of the thermodynamic behaviour of f.c.c.-
Ni—Fe alloys, only a few of them address the investigation of the order—
disorder phase transformation kinetics. For example, in [11], the au-
thors studied all stages (nucleation, growth, and further coarsening)
inherent to the 1%-order transformation in Ni;Fe Permalloy alloy by
means of experimental measurements (SEM technique and x-ray dif-
fraction). They showed that the degree of order in these alloys is sensi-
tive to the annealing temperature and decreases with temperature in-
creasing; the ordering kinetics, notably, the domain structure and the
impurity effects, was investigated too. Nevertheless, the role of mag-
netism was analysed neither experimentally nor theoretically. It is also
necessary to mention the lack of kinetics investigation for NiFe Elinvar,
where, besides the magnetic effects, the elastic effects can perform the
crucial role in the microstructure formation. Due to the slowness of the
diffusion processes, the experimental observation of ordered structures
in these alloys is rather difficult and, thus, the theoretical modelling
becomes a useful tool in the investigation of the ordering processes.

In a given work, we study the effects of magnetism and elasticity
(induced by the size mismatch between the constituent atoms) on the
formation of the ordered structures in Permalloy and Elinvar alloys. In
Section 2, we formulate a model used to calculate the kinetics of order—
disorder transformation. The obtained results are presented and dis-
cussed in Sec. 3 and are followed by the overall conclusion in Sec. 4.

2. MODEL

On the microscopic level, the physical kinetics of phase transformations
can be described, using the Onsager-type microscopic diffusion equa-
tions. Within the scope of the concentration waves (and in particular,
the static concentration waves—SCW) representation, such an approach
was firstly proposed by Khachaturyan [12, 13]. The morphology of a
two-phase alloy is described by a single-site probability function, p(r,?),
which is the probability of finding a solute atom B (e.g., Fe in NisFe and
NiFe alloys) at a lattice site r and at an instant time ¢. The diffusional
relaxation of a binary o—f alloy is described by the equation[12, 13]:

dp(r,t) _ cg(l_cp) — OAF
dt kT ;L(r r)sp(r’,t)’ 1)

where cg is the atomic fraction of solute (B) atoms, k5 is the Boltzmann
constant, T is the absolute temperature; L(r—r’) is the Onsager kinetic
coefficients related to the substitutional atoms’ mobilities by means of
appropriate diffusion mechanism between the sites r and r’; AF is the
configuration-dependent part of the total Helmholtz free energy (per
site) including three contributions: ‘electrochemical’, magnetic and
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elastic ones, i.e. AF = AF o, + AF 100 + AE .. The sum is carried out over
all N sites of the Bravais lattice. The kinetic equation (1) approximates
the evolution rate by the first non-vanishing term of its expansion
with respect to the thermodynamic driving force, dAF/dp(r,t) (small
driving force). Within the long-wave approximation, Eq. (1) trans-
forms into the conventional Cahn—Hilliard equation [14].

Within the scope of the self-consistent-field approximation, the con-
figuration-dependent part of free energy of binary substitutional alloys
is defined as follows [12, 13]:

AF =

ﬁ 3 (k)| )| + kTS {p() In p(r) +[1 - p(r)]In[l - p(x)]} -

—TAS, 05 (2)

here, w(k) =X w(r)exp(—ikr) is the Fourier transform of total ‘mixing’
energies, {w(r)}, and p(k) =Z p(r)exp(-ikr) is the Fourier transform of
probability function, p(r). The summation over r is carried out over all
the Bravais lattice sites; the summation over k is over all points of quasi-
continuum within the 1% Brillouin zone (BZ) of such lattice permitted by
the periodic boundary conditions. Assuming the interatomic interactions
within the four coordination shells of f.c.c. lattice, w(k) is defined as

w(k) = 4w, (cos mh cos mk + cos h cos Tl + cos 1k cos ntl) +
+2w,(cos 2nth + cos 27l + cos 27k) +
+8w, (cos 2nth cos Ttk cos Tl + cos 21k cos h cos Tl + cos 27l cos Th cos k) +
+ 4w, (cos 2nth cos 21tk + cos 2nth cos 27l + cos 21tk cos 2ml) + ... 3)

here, w,, w,, ws, w,, ... are the values of the effective interchange (‘mix-
ing’[) energies of substitutional atoms, w(r) = w,,(T) + Ween(r) = (Wepen(T) +
+VLIP(E)) + W,0n(T), for the 1%, 27, 3, 4% neighbouring coordination
shell, respectively; V. *(r)) is the strain-induced contribution (due to the
atomic-size mismatch) in the ‘mixing’ energy; (4,k,l) are continuous di-
mensionless coordinates of the wave vector defined as k=(k,,k,,k,)=
=(2n/a)(h,k,l) (a is the equilibrium lattice parameter of f.c.c. lattice).
Equation (2) has a simplest form of free energy, which is used to mod-
el the kinetics of the system. However, we should mention that, in order
to calculate the miscibility gap and the free energy, a more complicated
expression should be used (see Appendix). The ‘paramagnetic’ energies,
{w,m(r)}, are calculated, considering the polynomial approximation pro-
posed in Refs. [5, 9]. Besides, for a magnetic alloy, one should also con-
sider spin-dynamics equations, i.e. it is necessary to take into account
the nonzero derivatives of relative magnetizations, {doy(r,?)/dt}. How-
ever, as, for considered Ni—Fe alloys, the spin-rotation relaxation rate is
much higher than the rates of atomic microdiffusion jumps, these terms
are neglected in the presented model. Therefore, the magnetic contribu-
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tion to the overall system evolution consists of adding the magnetic en-
ergies (Wiagn(r)= J " (r)spc0re +J " (T)SnPON: — 2V (r)SpeSniOpOn; Within
the intracrystalline ‘molecular field’ approximation that is the mean
self-consistent-field one) to the total ‘mixing’ energies of constituents
described with the spin numbers, {s,}, ‘coupled’ by means of the ‘ex-
change integrals’, {J*(r)}. The equilibrium values of {c,} are found by
minimization of the total free energy (see Refs. [5, 9, 15, 16] and Ap-
pendix), accounting a magnetic contribution to the entropy too.

The elastic energy, which arises from the mismatch between the lat-
tice parameters of the matrix and the precipitates of a new phase, can
be calculated within the scope of the Khachaturyan—Shatalov micro-
scopic elasticity theory of structurally inhomogeneous systems [12,
13, 17, 18]. Following Khachaturyan and colleagues [14, 19—-23], the
strain-induced energy generated by arbitrary structure inhomogeneity
can be presented in terms of the concentration or long-range order pa-
rameter fields. Assuming the Végard’s law and the equivalency of elas-
tic moduli tensors, {A;}, for host-crystal and precipitate phases, the
morphology-dependent part of the strain-induced energy can be writ-
ten in the reciprocal-space representation form as follows:

~ ~ 2
> Bw)|C)| , (4)

~ Yo
elast
2N ke BZ

where n = k/|k| is a unit vector along the k direction, C(k) is the Fouri-
er transform of the inhomogeneous composition field, ¢(r). The func-
tion B(n) =&5(Ayy— nAijmmQip() Ay ) contains all information on the
elastic properties of the system and crystallography of the phase pre-
cipitation, where vy’k|?|Q;(n)|| is the Green function matrix asymptot-
ics (at k —0), which is inverse to the tensor [k*|Q;(n)[™ =[k[?|\,7.n;
g=(ay—a,)/ {ay(c[§Y) —céY))} is the concentration coefficient of stress-free
lattice-transformation dilatation caused by the changes in composition
of a binary alloy (v, is the atomic volume); céY) (céw) and a, (ay) are the
concentration of the solute and lattice parameter of f.c.c. disordered-
matrix (ordered-precipitate) phase, respectively. At k=0, the function
B(n) has a singularity, since its limit at k - 0 depends on the k vector
direction. This singularity results in a long-range asymptotic behav-
iour of the strain-induced interaction in a real space [24].

3. RESULTS AND DISCUSSION

The microstructure evolution is modelled on a 2D square lattice con-
sisting of 1024x1024 unit cells. The nucleation stage is neglected as we
limit ourselves to the study of the coarsening stage. Therefore, at the
beginning of the simulation, from 200 to 800 small spherical precipi-
tates of the new phase are manually embedded into the homogeneous
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Fig. 2. The concentration dependence of the configuration part of the total
free energy at T = 650 K.

matrix. The concentration of these precipitates is chosen, according to
the equilibrium concentration of the ordered phase. The effects of
magnetic and elastic contributions on the microstructure evolution are
studied by comparison of simulations with and without the respective
terms (W, agn> AE ) in the total ‘mixing’ energies of atoms and the free
energy. The kinetic equation (1) is numerically solved in the reciprocal
space by means of the explicit Euler method. The corresponding atomic
distributions are recovered, using the backward Fourier transform. In
the course of simulations, the periodic boundary conditions are ap-
plied, and the time step is set to At = 107",

According to Fig. 1, the temperature T=650 K is chosen in order to
study the system in two-phase coexistence regions. Such a choice is con-
firmed by the thermodynamic calculations and the free energy plot
(Fig. 2). In Figure 2, the two-phase regions (with cp,€[0.1;0.185] for
L1,+A1 mixture and cp. € [0.385; 0.425] for L1,+ L1, one, respectively)
are defined by the common tangent construction. From such a plot, one
can notice that taking into account magnetic interactions leads to de-
crease of the total free energy and broadening of the phase boundaries,
which testifies that magnetism stipulates the ordering processes and the
stabilization of the ordered phases in the studied alloys. The investiga-
tion of kinetics should give further confirmation of such a hypothesis.

Simulations are performed for some representative compositions
within the specified two-phase regions. In particular, c;,=0.14 and
0.41 are chosen to study Permalloy and Elinvar alloys, respectively.
The interaction parameters calculated at such thermodynamic condi-
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TABLE 1. The interaction parameters (‘mixing’ energies) [meV] calculated at
T =650 K, considering that w(r;)=0.3 meV and w(r,)=0.7 meV [5, 9]. In the

second column, the symbols ‘+’ and ‘—’ denote the presence and absence of
magnetism.
Cre magnetism| Oni ‘ Ore ‘ w(k;) ‘ w(ky) ‘ w(r;) ‘ w(r,)
0.14 - - - 591.125 -351 58.283 -20.645
+ 0.767 0.806 854.048 -438.667 80.195 —20.648
0.41 - - - 313.255  -229.5 33.322 -17.035
+ 0.88 0.634 515.024 -296.778 50.138 -17.038

tions are listed in Table 1. The values for 1°* and 2" coordination shells
are extracted from w(k;) and w(k,) , using the set of linear equations:

{w(kr) = 12w(r,) + 6w(r,) + 24w(r,) + 12w(r,),

w(k,) = —4w(r,) + 6w(r,) — 8w(r,) +12w(r,), (%)
and considering the ‘strain-induced’ interactions right up to 4" shell
(w(r;)=0.3 meV, w(r,)=0.7 meV; see details in [5, 9]); the ‘paramagnet-
ic’ and magnetic interactions are considered as short-range ones, i.e.
within the nearest (for magnetic) and next-nearest (for ‘paramagnet-
ic’) neighbourhood only.

3.1. The Effect of Magnetism on the Microstructure

In Figure 3, the results of simulation are presented for both alloys:
Ni, g6Fe, 14 Permalloy (Fig. 3, a) and Ni, ;oFe, ,; Elinvar (Fig. 3, b).

In order to clarify the role of magnetism in the ordered-structure
formation in Permalloy alloys, two kinds of simulations are performed:
with neglecting magnetic contribution, i.e. w,,,,,=0, and with consider-
ing it via the appropriate calculation of w,,,.,#0. In both cases, the ini-
tial configuration of an alloy is consisted of disordered matrix with
cr.=0.1 and a set of small L1,-ordered nuclei with cz,=0.185. The time
evolution of a nonconserved system that separates into phases of differ-
ent concentration is studied and shown in Fig. 3, a at reduced time
t'={0, 20, 40} (measured in units of Monte Carlo steps per site [MCS/s]).

Neglecting the magnetic nature of an alloy (w,,,,,=0; Fig. 3, a, left col-
umn) results in complete disappearance of the nuclei of ordered phase,
which were initially embedded into the disordered matrix. This behav-
iour agrees with the calculated configuration-dependent free energy
curves (Fig. 2) and testifies that, at such temperature and at the condi-
tion of w,,,,, =0, the chosen alloy does not undergo an ordering reaction.

In turn, taking into account the magnetic effects, one obtains an op-
posite result. During the evolution, the growth and coarsening stages
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Fig.3. The microstructure evolution of Ni,g¢Fe,;, Permalloy (a) and
Ni, soFe, 4 Elinvar (b) alloys at reduced time #"={0, 20, 40} with (right col-
umns) and without (left columns) taking into account the magnetic (a) and
elastic (b) effects; (c), (d)—respective concentration profiles and (e), (f)—
atomic arrangements corresponding to medium section at t*=40.

appear sequentially, and at late stages, the large L1,-ordered precipi-
tates continue to coarsen the smaller ones until the stationary state is
attained.

The morphology of the obtained structure allows to clearly distin-
guish both Al-type disordered phase and L1,-type ordered one (marked
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with black and white colours in Fig. 3, a (right column), respectively).

The latter forms the precipitates of nearly spherical shape. At late
stages of evolution, the system is characterised by a set of the ordered
particles, which differ from each other by a displacement vector
((011)a/2, (101)a/2 or (110)a/2) and are separated by the antiphase
(APB) and interphase (IPB) boundaries.

We should note that, for larger Fe content (closer to the right limit
of the two-phase coexistence interval, e.g., ¢;.=0.17), the ordered
phase grows till the size of large domains, and the main evolution
mechanisms in this case will be as follow: 1) the growth of large do-
mains at the expense of the APB movement, 2) the merging of two do-
mains of the same type, and 3) the dissolution of the intermediate do-
mains (see Ref. [25] and references therein).

In Figure 3, ¢, the local concentration profile for the longitudinal
median section of final structure at ¢t'=40 for simulated Ni,gsFe, 14
Permalloy is presented. Let us note that the local concentration at each
lattice site is calculated by means of averaging over the 1" and 2" co-
ordination shells [14, 19-22, 25—-27]. As can be seen, in the disordered
phase, the local concentration approaches the equilibrium concentra-
tion of the disordered phase determined by the phase diagram (Fig. 2),
i.e.cp,=0.1. In turn, the ordered phase is characterised by the local con-
centration cp,=0.176 and tends to the equilibrium concentration of the
L1,-type phase, i.e. 0.185.

The example of atomic configuration for simulated Ni, gsFe,;, Perm-
alloy at late stage of evolution (¢"=40) is presented in Fig. 3, e. The black
(white) colour marks the lattice sites, where the Fe (Ni) atoms can be
found with the highest probability; grey colour marks the sites, where
the probabilities to find Fe (Ni) atoms are identical, i.e. the disordered
phase. Inside the ordered precipitates, the atoms alternate in the man-
ner inherent to the 2D projection of the L1,-type superstructure.

3.2. The Effect of Elastic Contribution on the Microstructure

The influence of the elastic energy on the microstructure of the Elinvar
alloys is studied by means of two kinds of simulations: neglecting the
elastic term (Eq. (4)), i.e. AE,,.=0, and considering it by the explicit cal-
culation of AE,.#0. In both cases, the initial configuration of the alloy
consisted of both L1,-type ordered matrix with ¢;,=0.385 and a set of
small L1,-type ordered nuclei with c,=0.425. The time evolution of a
nonconserved system at issue at reduced times t*={0, 20, 40} is shown in
Fig. 3, b. Let us mention that, for Elinvar alloys, it is important to con-
sider the elastic contribution, AE,,, to the free-energy functional due to
the tetragonality of L1,-type phase and more pronounced crystal-lattice
mismatch between the two adjacent phases (L1, and L1,) than in Permal-
loys (L1, and Al). Owing to the small difference in the tetragonal-phase
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parameters, a and b, [28, 29], in the presented simulations, this feature
is neglected, and the following lattice parameters are used [1, 29]:
a,,=0.35338 nm, a,,,~0.356667 nm, a;;,~0.358229 nm.

One should mention that, for Elinvar alloys, the role of magnetic
contribution is also tested, and the obtained results resemble the out-
comes reported above for the Permalloy alloys. Neglecting the mag-
netism results in dissolution of the embedded nuclei. Thus, further,
the magnetic contribution will be implied by default and, as seen from
Fig. 3, b, the microstructure formation is a result of the growth and
coarsening stages. When elastic energy is neglected (Fig. 3, b, left col-
umn), the obtained microstructure contains precipitates of nearly
spherical shape, which are isotropically distributed over the system.

However, taking into account the elastic energy (in particular, due to
the elastic interactions between the L1,-type precipitates) results in both
change of precipitates shape to the plate-like (or rectangular) one and the
anisotropy along (100)” direction in their distribution. Let us note that
the appearance of the anisotropy in the system with L1,-type order has
been found previously (see Refs. [19, 20, 22, 25] and references therein),
but as shown, it appears along the (110)"-type direction, and the precipi-
tates form a certain type of pattern, for instance, tweed, twin, chess-
board-like patterns, etc. We assume that such behaviour is a consequence
of the tetragonality of L1,-type phase, and, as we have neglected this fea-
ture in our simulation, we do not expect the identical peculiarities.

Among the specific features of the microstructure generated, con-
sidering the elastic effects (AE,,), one can note the formation of
‘chains’ of precipitates, which appear due to inability of particles with
different orientation and translation variants to merge (coalesce). (In
general, in 3D case, the precipitates of L1,-type phase have three orien-
tation variants and three translation variants, i.e. in total, six variants;
in 2D case, one has three different variants). For visual presentation of
the microstructure, which is formed during the evolution, the local
concentration profile for the longitudinal median section and the ex-
ample of atomic configuration of final structure at ¢t'=40 for simulated
Niy 50Feq 4; Elinvar are shown in Fig. 3, d and f, respectively. In the lat-
ter figure, one can clearly see the precipitates of L1,-type phase of three
different types (the atoms are altered in a different manner) and the
L1,-type phase matrix. The black (white) colour marks the lattice sites,
where the Fe (Ni) atoms can be found with the highest probability. As
seen in Figure 3, d, the local concentration profile smears out approach-
ing the IPB owing to the change of ordered structure; the APB between
the precipitates are not found as a result of wetting by L1, phase.

3.3. Analysis of the Microstructure Evolution

The shape of precipitates can be estimated by the aspect ratio (AR) of
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their sides in Ox and Oy directions following the rules: if AR < 1.5, pre-
cipitates have a shape close to circle (spherical) or square (cubical); if
1.5<AR<2.5, particles possess a rectangle shape; if 2.5<AR<3.5 or
AR > 3.5, precipitates tend to have a plate-like shape [30]. One can see
in Fig. 4, a that such an analysis adequately reflects the simulated
shapes of precipitates: for Ni, g¢Fe, ;4 Permalloy and Ni, ;oFe, ,; Elinvar
without elastic contribution, the AR tends to unity that confirms a
spherical shape of precipitates; in turn, considering the elastic contri-
bution for Ni ;,Fe, 4; Elinvar, the AR is evidently > 1.5 and < 2.5, con-
firming a rectangular shape.

In Figure 4, b, the calculated volume fraction of a new phase is shown
for all simulated alloys. When magnetic interactions are neglected, the
dissolution of all particles of the L1,-type ordered phase results in a fast
decrease (to 0) of a volume fraction, and therefore, further analysis of
this case will be omitted. During the growth regime, the volume frac-
tion of Ni, ¢sFey 14 Permalloy (with magnetic effects) grows from 0.004
to 0.5 and reaches its equilibrium value already at ¢"~1 that indicates
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Fig. 4. The time evolution of the aspect ratio, AR (a), volume fraction (b) and
cube of the average precipitate radius (c¢) for Ni, gsFe, 1, and Ni, ;o Fe, 4; alloys.
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the start of the coarsening regime. Similarly, the volume fraction of
Ni, 50Fe, 4 Elinvars indicates the start of coarsening regime already at
t"=1 and reaches 0.617 and 0.622, when elastic effects are neglected
and taken into account, respectively. Such a difference can be attribut-
ed to the different number of precipitates contained in the system at
different time intervals; for example, at last time step (¢'=40), the
studied alloy has 22 and 26 L1,-type particles, respectively.

Following the Lifshitz—Slyozov and Wagner’s theory (LSW, [31,
32]), at late stages of evolution, the cube of the average particle radius
obeys a power law:

(R)’ = Kt, (6)

where (R) is an average radius of a precipitate, ¢ is a time of rise, K is
the coarsening rate. In Figure 4, ¢, such behaviour is noticeable for all
studied alloys. A slope of each curve determines the coarsening rate,
K. One can also visually distinguish the growth and coarsening stages;
at the growth stage, the radius of particles grows very fast and, there-
fore, the slope of the curves is steepest. From the simulated data, one
can estimate the average size of precipitate, and using the linear ap-
proximation, one can estimate the coarsening rate as a slope of the re-
spective linear curve, Kt+const=(R)?. For Ni,¢Fe, ., Permalloy, one
finds (R)=8.6 nm (at t'=40) and K =2309.52 (in arbitrary units). The
same analysis can be applied to the outcomes for Ni,;,Fe,,; Elinvar;
the effect of the elastic contribution can be seen in a slowing down the
coarsening reaction and a respective decay of the (R)*(¢) curve.

The fluctuating character of the <R>%(t) dependences for Elinvar al-
loy is explained by a small amount of precipitates at the late stages of
evolution; the averaging over a number of different system realiza-
tions (initial precipitates’ amount and distribution) can possibly
smooth the resulting curve. (In particular, the results in Fig. 4 are ob-
tained after averaging over different precipitates’ distributions with
their initial number equal to 200 and 800.)

The classical LSW theory also predicts a specific time-independent
form of a precipitates’ size distribution (see the thick grey curve on
Fig. 5, a, b), but as seen for all simulated alloys, the size distribution
curves appreciably deviate. For Ni, scFe, 1, Permalloy (Fig. 5, a), one can
deduce the asymptotic form of the curves for the precipitation of parti-
cles of some characteristic size, namely, the features inherent to the
classical LSW theory. But, owing to the considerable volume fraction of
the precipitated phase, the form of the curve deviates from the classical
one, namely, one can notice the broadening, the more symmetrical shape
of a distribution, and a shift of the maximum to the region of sizes,
which are smaller than the average precipitates’ radius, <R>. At late
stage (" = 40), the distribution widens towards the range of big-particle



910 I. V. VERNYHORA, S. M. BOKOCH, and V. A. TATARENKO

25
25 ¢ =04l (B_=0)
O 0.14 -'.!_. 1-40“
t=0 — LEW
——t=10
- t=20 e =4l (E, =)
———t=30 e
- = g0
= - LSW
S
LY
..\
._-\- LS _‘,'.'!.‘_'_:.L__
":'.-;_I‘.. T T T —
& o8 15 20 25
a0
c, =014 ] =041 (E_=0
A i=2 t=2
-——i=10 25 ——-t= 10
- =30 S =20
—— =30 ———-f = 30
----- 1= 40 20— —mt =40
2 g5 m 041 (E_ -
o t=40
oy
104
5-
1 T 0 T T v
0.10 0.5 6.00 0.05 0210

Fig. 5. The time evolution of the size distribution function, A(p) (p=(R)/R), (a,
b) and the structure factor (c, d) for Ni, gsFe, ;4 and Ni, ;o Fe, 4, respectively.

sizes that confirms the increase of larger particles comparing to the pre-
vious evolution stages; the distribution has the ‘tails’ that signifies the
presence of the precipitates (domains) with a size much greater than the
average (R). In case of Ni, ;,Fe, ,; Elinvar, the size distribution also devi-
ates from its classical form (Fig. 5, b), and one can see that taking into
account the elastic effects changes its form. In particular, when
AE,.#0, the distribution broadens, and the maximum shifts to the
range of smaller precipitate sizes. Similar to the Permalloy, the Elinvar
distribution curves allow one to distinguish a significant amount of pre-
cipitates with a size much greater than the average (R).

The deviation of the distribution curves from the classical LSW re-
lation due to the considerable (not null) volume fraction has been re-
ported previously and generated a number of investigations concerned
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with its improvement and modification (see, for example, [33—35]).
For instance, according to the modified LSW theory (LSEM—Lifshitz—
Slyozov encounter modified one [35]), the widening of the distribution
takes place at the expense of the removal of two small particles and the
addition of one big particle instead (see also Ref. [27]).

Another quantity, which allows drawing a conclusion about the or-
der and the scale of the obtained structure, is the structure factor,
which is a Fourier transform of a pair-correlation function:

S(k,t) = 1 e ™ (e, t)e(r +1',t) —cZ.) ), )
N ,

where c(r) is a local concentration at the site r at the instant of time ¢,
Cr. is a nominal concentration of the alloy, k is a wave vector within the
1% Brillouin zone of the reciprocal space. The sum and average ({...)) is
taken over all N crystal-lattice sites. Further, it is more convenient to
use the normalized spherically averaged structure factor:

_ S(k,t) _ S(k,t)
s(k,t) = S st N (<c2(r)> - cﬁe) . (8)
S(k, t)

k—Ak/2<|k|<k+Ak/2

S(k,t) = is a spherically averaged structure factor,

k-Ak/2<|k|<k+AR/2

where k = k| is a length of the wave vector k. In the denominator, there is
a number of points lying in the Ak-thickness vicinity of the wave vector
k. The time evolutions of the calculated structure factors for Ni, gcFeg 14
and Ni, ;,Fe, ,; are shown in Fig. 5, ¢, d, respectively. As can be seen
from both graphs, the width of structure factor reduces with time that
evidences the formation of sharp interface between two phases (L1,+A1
and L1,+L1,, respectively); the maximum height increases and shifts to
lower k values confirming thereby the coarsening reactions and the in-
crease of the precipitates’ size [27, 30, 36, 37]. The elastic contribution
(Fig. 5, d) does not influence the location of the maximum but slightly
increases its height and width. The broadening of the maximum and the
respective smearing of IPB is confirmed by the local concentration pro-
file (Fig. 3, d), which is diffuse close to IPB, and by the appearance of
‘chains’ of precipitates situated close to each other. In this case, the IPB
can be very narrow (up to 2 interatomic distances) and diffuse. For
NiysoFeq 41 with AE =0, the number of such IPB is smaller.

Let us mention that the structure factor can be evaluated experi-
mentally due to its straightforward connection to the coherent scatter-
ing intensity. Thus, the conclusions drawn from the computer simula-
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tions can be confirmed by the investigation of the real alloy samples.

4. CONCLUSION

In a given article, the physical kinetics of the atomic orders in Permalloy
and Elinvar alloys is investigated, using the Onsager-type microdiffu-
sion equation. A special attention is paid to the effects generated by the
magnetic and elastic interactions in these alloys. As revealed, the mag-
netic nature substantially influences the atomic ordering in this system
and, in fact, promotes to stabilize the ordered phase (L1, in Permalloys
and L1, in Elinvars) and increases the width of the two-phase coexist-
ence region. In turn, the elastic interactions between the precipitates
significantly change the morphology of the Elinvar alloys, promoting
the anisotropy in the form and the arrangement of precipitates. For
Permalloy alloys, the elastic effects turn out to be negligible.

The calculated statistical characteristics confirm the effects of
magnetic and elastic interactions on the kinetics and structure proper-
ties. The simulated microstructure for the high volume fraction of L1,
phase is in a good agreement with the available experimental data [11].
One should also note that, due to the slow diffusion processes in f.c.c.-
Ni—-Fe alloys and low temperatures of the order—disorder phase transi-
tion, there are only a few experimental data about the microstructure
in these nonconserved systems. The latter makes the presented study
useful for a general consideration of magnetically and atomically or-
dered systems.
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APPENDIX A

The free energy and the phase diagram can be calculated, using the
SCW representation [12, 13], where the occupation probabilities {p(r)}
are defined as follow:
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n

p(r) — cﬁ + Z[ei2na;.r + ei2na;-r + eizna;.r] (A]_)
for L1,-type superstructure and
p(r)=c¢, + 2 2 (A2)

for L1,-type superstructure, respectively. 1 is the long-range order pa-
rameter, which varies from O in the disordered state to 1 in the com-
pletely ordered state (at the corresponding stoichiometry); the vectors
a,’,a,,a; are the unit reciprocal-lattice vectors of f.c.c. crystal lattice
along [100], [010] and [001] directions, respectively; |a,"|=|a,=|as]|=
=1/a. Substituting Eqgs. (A1), (A2) into Eq. (2), the expression for the
‘paramagnetic’ free energy of the L1,-type structure can be written as:

1 ,. 3(n ?
= Ecﬁwprm(0)+§ 1 W (Ky) +

3(03—njln[cﬁ—nj+3£1—cﬁ+njln£1—cﬁ+nj+ (A3)
k,T 4 4 4 4

4+c+§ lnc+§ +1—c—§ lnl—c—E ’
p M p M BN p g

where cg is the solute concentration.

The magnetic free energy can be defined within the scope of the ‘mo-
lecular field’ approximation [5, 7, 9, 10, 13], and the resulting config-
uration-dependent part of the total free energy will have a form:

AF 1

~ =3 [cgwpm(O) +Jd“(0)oss;¢5 + P (0)05s2(1 - ¢;)* + 2P (0)0,0,5,8,¢,(1 — ¢5) +

+

+ % N (@ (k) + T (ki )Oos? + I (ky )ohss — 20 P (K )0,05,5, )] +
3 3 3 3

. kBT (CB +anln(cﬁ + Zn] +(1 - CB —anln[l - CB —Zn] +

4 +3(cB —ﬂjln(cB —HJ+3(1—CB +ﬂjln(1—c[3 +ﬂj

4 4 4 4

—kyT ¢y | In| sh M —In| sh M = Y3(0,,,)B, (y3(5;,)) |+

2s, 2s, ’ b ’

+(1-cy) {ln (sh (—(28“ i 1)1/“(0“,3)}] ~1n (sh (—ya(G“‘B)B - Y,(0,4)B, (y,(0, B))}}

2s, 2s, e ’

for L1,-type phase (for Ni;Fe alloys or for NiFe; alloys after a trivial

- (A4)
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change of indexes: § <> a);

AF
N =
1 D 7 T oo o
= E[cgwprm (0) + J*(0)5252c2 + T “(0)0%52(1 - ¢;)° + 2T ®(0)5,558,5,¢,(1 - ¢;) +
+i ( W, (Ky ) + T (ky )olsh + I (ky )osss — J“B(kX)GuGBSaSB)] +

1 1 1 1
[cﬁ +§nj1n(cB +§”J+(1_CB —Enjln(l—cB —Enj+
il il n il
+(cB —Ejln(c[3 —§j+(1—c[3 +Ejln(1—cB +§j
~kyT<cy|In| sh M —1n| sh M - Y3(05,)B, (y3(0,,)) |+
2s, 2s, P '
(2s, + Dy, (c,;) Yu(0,p)
+(1-cy) {m (sh [TBD —In {sh (—2% : B = Yo (O ) B, (o (O, DH

(A5)

kB

for L1,-type phase (NiFe alloys). w . (k) is the k-th Fourier component
of the ‘paramagnetic’ mixing energles {(Wym(r—1")};5 J 7°(k) is the k-th
Fourier component of the magnetic ‘exchange’ interactions ‘integrals’
(T -1)}; 0, (op) is the magnetic long-range order parameter (i.e. the
reduced magnetization of o (B) constituents); s, (sp) is the value of the
total spin number of an atom of o (B) kind; B,({) is the conventional
Brillouin function defined as follows:

1 1 1 1
BJu(ga)s(nE]cth((nng ]—gcth(zJ g, )

J H" Jgu
G, = P B( > 500

where J, = s,+1, is the total angular moment of an atom, which consists
of both the spin number (s,) and the orbital momentum number (/). We
assume that, for transition metals, J, = s,. H? -8y ﬁl"aﬁcsﬁ is the

mol —

Weiss intracrystalline ‘molecular field’ (MSCF) with coefficients {T'qp}.
The equilibrium order parameters can be determined by solving the
set of transcendental equations obtained after minimizing the free en-

ergy.
For L1,-type superstructure, one obtains:
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e, -Ml1-¢ _3 %
! p g o | @) + T (ke )sio] +

In

. J(0)(1 - ¢;)*s20, + I P (0)cy (1 - ¢5)s, 8,0, +

| (- ey)k,T +%n2 [T (ky)sio, — TP (ky)s,5,0, |

o

JP(0)cisi0, + TP (0)c, (1 - ¢y)s,5,0, +
; (A6)

Pl cgksT +%n2 [JBB(kX)sscsﬁ —J%(k, )sasﬁca]

and for L1,-type superstructure:

C —n 1-c¢ —n ~ Too 2 2
n B9 B9 R wprm(kX)+J (ky)s;o, +

(1 —cy + 2) (cﬁ + 2) kT |+ (ky )sp0p — 2J P (k. )s,8,0,0;

) J0)(L - )’ s20, + TP (0)cy(1 - ¢)s, 8,0, +

Su =B, | T T m T s j
| (A =c)k,T +z[J%(kX)sioa—J“ﬁ(kx)sasﬁ"ﬁ]

JP(0)cisio, + TP (0)cy(1 - ¢)s, 8,0, +

A I I 25 _ job (AD)
cskey +Z[J (k)550, — I Pk )5,8,0, |
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