PACS numbers: 42.70.Qs, 68.37.Hk, 68.55.J-, 78.20.Ci, 78.66.-w, 78.67.-n, 81.15.-z

# Структура и свойства наноструктурных керамических плёнок для фотоники

В. А. Лубенец, О. А. Горбань\*, И. Л. Любчанский\*, В. В. Бурховецкий\*, И. А. Даниленко\*, Г. К. Волкова\*, Т. Е. Константинова\*

Донецкий национальный университет, ул. Университетская, 24, 83001 Донецк, Украина \*Донецкий физико-технический институт им. А. А. Галкина НАН Украины, ул. Р. Люксембург, 72, 83114 Донецк, Украина

В данной работе с использованием технологии Tape Casting получены керамические наноструктурные плёнки микронной толщины 8–23 мкм. Структура, морфология и оптические свойства плёнок изучены. Показано, что полученные плёнки являются прозрачными в среднем инфракрасном диапазоне. Изучена зависимость вида интерференционной картины от толщины синтезированных плёнок.

У даній роботі з використанням технології Tape Casting одержано керамічні наноструктурні плівки мікронної товщини 8–23 мкм. Структуру, морфологію і оптичні властивості плівок вивчено. Показано, що одержані плівки є прозорими в середньому інфрачервоному діяпазоні. Вивчено залежність вигляду інтерференційної картини від товщини синтезованих плівок.

A given paper is concerned with investigations of fabrication of the nanostructured ceramic films with thickness of  $8-23\,\mu m$  using the Tape Casting technology. Structure, morphology, and optical properties are studied. As shown, the obtained films are transparent in a medium infrared range. The relation of form of the interference pattern depending on the synthesized-films' thickness is studied.

**Ключевые слова:** наноструктурные плёнки, диоксид циркония, технология Tape Casting, интерференция.

(Получено 30 октября 2010 г.)

#### 1. ВВЕДЕНИЕ

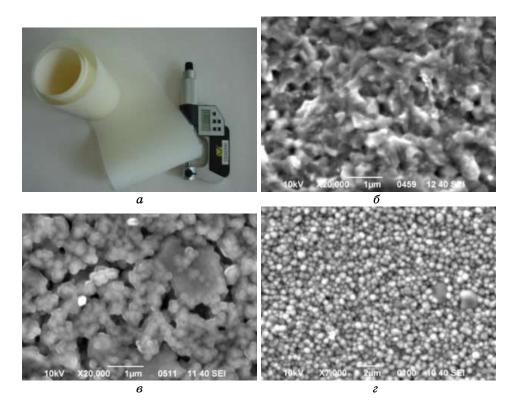
Технологии создания фотонных кристаллов ( $\Phi K$ ) — искусственных структур, состоящих из компонентов с различными показателями преломления [1], представляют несомненный интерес, поскольку в последние годы фотонно-кристаллические структуры находят широкое применение в качестве основы элементной базы приборов и устройств современной фотоники и оптоэлектроники [2]. Современное состояние развития этих технологий базируется на высоком уровне теоретических разработок, которые активно развиваются исследователями многих научных школ. Построение ФК любой размерности основывается на создании оптических элементов, в частности, пленок с толщинами, сравнимыми с длиной волны соответствующего электромагнитного излучения, свойства которых во многом определяются внутренней структурой и морфологией пленок. В настоящей работе мы сконцентрировали свое внимание на исследованиях структуры и оптических свойствах пленочных материалов на основе диоксида циркония, полученных методом Таре Casting [3]. Наш выбор данной технологии создания пленок и материала для их изготовления [4] основан, прежде всего, на перспективности их использования. Поскольку этот метод позволяет получать пленки как самостоятельные структурные элементы достаточно протяженных размеров с толщинами от 2 мкм и более, а его методология основана на использовании самоорганизации наночастиц в среде сольвента и полимера с регулируемой вязкостью. Это дает возможность, варьируя природу наночастиц, сольвента, полимера, а также режимов отжига, создавать пленки с различной морфологией, плотностью и пористостью [5].

## 2. МЕТОДИКА ЭКСПЕРИМЕНТА

Литье пленок с заданными толщинами выполняли на установке Таре Casting фирмы Mistler с использованием шликерной массы на основе нанопорошка диоксида циркония с характерными размерами 31 нм. В качестве связки при изготовлении шликерной массы использован поливинилбутираль, как дисперсант — рыбий жир, в качестве пластификаторов — бутилбензилфталат и полиалкиленгликоль. В качестве сольвента использована смесь толуола и спирта в соотношении 1:1. Удаление сольвента из сырой пленки осуществлено при температуре 30°C. Выведение связки из пленки осуществлено в многоступенчатом режиме до 600°C, спекание выполняли при 1100°C и 1500°C со скоростью подъема температуры 3°/мин. Морфология поверхности и внутренняя структура пленки изучена методом растровой электронной микроскопии с использованием растрового электронного микроскопа JSM-6490 LV (Япония) в режиме вторичных

электронов. Фазовый состав пленок исследован с помощью метода рентгеноструктурного анализа (PCA), исследования выполнены с помощью дифрактометра ДРОН 3. Размер областей когерентного рассеяния рентгеновских лучей (ОКР) рассчитывали, используя метод Селякова—Шеррера:

$$D = 0.94\lambda/(\beta\cos\theta),\tag{1}$$

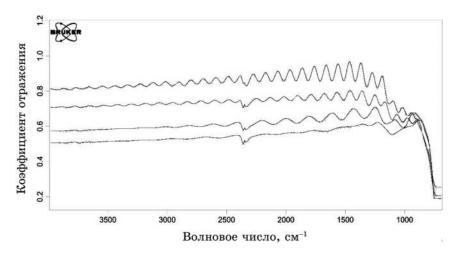

где D — диаметр ОКР;  $\lambda$  — длина волны рентгеновского излучения;  $\beta$  — физическое уширение дифракционного пика;  $\theta$  — брэгговский угол. Точность определения величины ОКР составила  $\pm 5\%$ .

Оптические свойства спеченной керамической пленки были исследованы методом ИК-спектрометрии. Для измерений использовался прибор Bruker TENSOR 27 Series FT-IR Spectrometer (границы измерений:  $7500-400\,\mathrm{cm}^{-1}$ , количество сканов: 30, разрешение:  $4\,\mathrm{cm}^{-1}$ ).

#### 3. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

В ходе микроструктурных исследований поверхности сырой пленки (см. рис. 1), а также пленочных образцов, спеченных при температурах  $1100^{\circ}$ С и  $1500^{\circ}$ С, было установлено, что однородная структура системы формируется еще на стадии полимерно-керамической пленки. Изучение морфологии такой полимерно-керамической пленки показало, что ее основу составляют глобулы с размером около 500 нм, состоящие из частиц, размером 31 нм (см. рис. 1,  $\delta$ ), которые являются прообразами зерен, формирующихся при их последующей температурной обработке пленки. Согласно данным растровой электронной микроскопии (РЭМ), структура пленок, спеченных при температуре  $1100^{\circ}$ С (см. рис. 1,  $\delta$ ), образована глобулярными агрегатами частиц размером около 200-400 нм.

Отметим, что структура пленок имеет развитую систему пор с размерами, сопоставимыми с размерами глобулярных агрегатов в полимерной пленке. Такая структура пленок, спеченных при температуре 1100°С, вероятно, обусловлена неодинаковыми скоростями усадки при спекании наночастиц внутри глобул и глобул между собой. Отметим, что внутренняя структура глобул из наночастиц определяется природой полимера. И в процессе удаления полимера происходит стягивание глобул, что приводит к интенсификации процесса межчастичного взаимодействия и более выгодной упаковке наночастиц в глобуле. Это способствует хорошему спеканию наночастиц внутри глобул. Взаимодействие частиц между глобулами на этом этапе реализуется не в полной мере, что и приводит к формированию развитого порового пространства между глобулами. Анализ структуры керамической пленки, спеченной при температуре 1500°С, показывает наличие зерен округлой формы с размерами 200–300 нм.




**Рис. 1.** Внешний вид и морфология эволюции тонкой пленки (по данным РЭМ): a — вид сырой пленки на подложке;  $\delta$  — микрофотография пленки, высушенной при температуре  $30^{\circ}$ С;  $\epsilon$  — спеченной при температуре  $1500^{\circ}$ С.

Известно, что для диоксида циркония при таких температурах формирование зерен происходит в результате рекристаллизации зерен, сформированных при более низких температурах. Согласно данным РЭМ, в пленках на основе диоксида циркония при этих температурах формируется достаточно однородная структура с хорошо ограненными зернами и незначительным количеством пор, что немаловажно для применения таких структур в фотонике.

Изучение фазового состава при спекании керамических пленок показало, что повышение температуры спекания приводит к появлению кубической фазы в количестве 12%. Это хорошо согласуется с данными электронной микроскопии, согласно которой в структуре пленок при температуре отжига  $1500^{\circ}$ С, наблюдаются большие зерна (см. рис. 1). Характерный размер ОКР тетрагональной фазы для структуры спеченных пленок при  $1500^{\circ}$ С равен 104 нм.

В работе изучены электродинамические свойства пленок разной



**Рис. 2.** Зависимость коэффициента отражения от длины волны электромагнитного излучения для пленок различной толщины.

толщины, спеченные при температуре  $1500^{\circ}$ С, в ближнем и среднем ИК-диапазоне. Спектры отражения этих образцов представлены на рис. 2. Как видно из представленных графиков, в области длин волн от 4000 до 1000 см<sup>-1</sup> наблюдается интерференционная картина, которую можно объяснить соизмеримостью толщины образца и длины волны рабочего излучения. В области ниже 1000 см<sup>-1</sup> наблюдается широкая полоса поглощения ИК-излучения, обусловленная поглощением связей Zr-O решетки диоксида циркония.

Отметим, что вид интерференционной зависимости зависит от толщины образца, что согласуется с теорией интерференции в тонких пленках [6]. Уменьшение толщины образца приводит к увеличению расстояния между соседними максимумами в интерференционной картине и снижению интенсивности амплитуды. Амплитуда пиков максимальна в диапазоне  $1250-1500~{\rm cm}^{-1}$ , а наиболее четкой является интерференционная картина пленок, толщины которых находятся в интервале от 18 до 23 микрон. Далее, при уменьшении длины волны амплитуда пиков уменьшается.

## 4. ВЫВОДЫ

В работе исследована возможность использования тонкопленочной технологии для конструирования отдельных фрагментов одномерного  $\Phi K$  с нужными геометрическими параметрами.

Показано, что использование нанопорошков диоксида циркония позволяет создавать наноструктурные керамические пленки достаточно больших размеров с однородной структурой, которые будут

прозрачны в видимом и среднем ИК-диапазоне.

Обнаружено наличие интерференционной картины в области длин волн от  $4000~{\rm do}~1000~{\rm cm}^{-1}$ , вид которой зависит от толщины исследуемой пленки.

## ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, *Photonic Crystals*. *Molding the Flow of Light* (New Jersey: Princeton University Press: 2008).
- 2. S. G. Johnson and J. D. Joannopoulos, *Photonic Crystals: The Road from Theory to Practice* (New York: Springer: 2002).
- 3. O. A. Gorban', V. A. Lubenets, I. L. Lyubchanskii, V. V. Burkhovetskii, I. A. Danilenko, and T. E. Konstantinova, *High Energy Chemistry*, **43**, No. 7: 566 (2009).
- 4. Т. Е. Константинова, И. А. Даниленко, В. В. Токий и др., *Наносистеми*, наноматеріали, нанотехнології, 2: 609 (2004).
- 5. R. E. Mistler and E. R. Twiname, *Tape Casting Theory and Practice* (Westerville: The American Ceramic Society: 2000).
- 6. М. Борн, Э. Вольф, Основы оптики (Москва: Наука: 1973).