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Cosmological scalar fields that mimic
the ACDM cosmological model

We look for cosmologies with a scalar field (dark energy without cosmological
constant), which mimic the standard ACDM cosmological model yielding
exactly the same large-scale geometry described by the evolution of the Hubble
parameter (i.e. photometric distance and angular diameter distance as func-
tions on z). Asymptotic behavior of the field solutions is studied in the case
of spatially flat Universe with pressureless matter and separable scalar field
Lagrangians; the cases of power-law kinetic term and power-law potential are
considered. Exact analytic solutions are found in some special cases. A number
of models have the field solutions with infinite behavior in the past or even
singular behavior at finite redshifts. We point out that introduction of the
cosmological scalar field involves some degeneracy leading to lower precision
in determination of Q,. To remove this degeneracy additional information is
needed besides the data on large-scale geometry.

KOCMOJIOI'IYHI CKAJIIPHI TOJIL, I[O IMITYIOTh KOCMOJOIIYHY
ACDM-MOAEJNb, XKoanos B. I., Ieawenxo I. K). ~ [Hocnidxeno xocmo-
NoeiHHI MOO0eni 3i ckanspruMm noiem (memna euepzii 06e3 KOCMOJOZIYHOL
cmanoi), wo imimyroms cmanoapmuy kocmonoziuny ACDM-modens, mobmo
npusodame 0o miei X camoi ceomempii ma esosroyii napamempa Iabbra (3
miero X 3aiexHicmio domomempuunoi @iocmani ma eidcmani 3a Kymoeum
Oiamempom @i0 z). Busueno acumnmomuuny nosedinky po3e s3Kié y eunaoxy
npocmoposo-naockozo Bceecaimy 3 0e33imKHIOBANLHONO MaMepicio | pIZHUMU
JAZPAHXKIAHAMU CKANSIPHO20 NOAst. Po3zasHymo eunadku cmenenegozo Kine-
MUYHOZO HeHa ma cmenenHesozo nomenuyiany. 3HalleHO aHaiMmu4Hi po3eé i3-
Ku ons Oeskux cneuyiarshux eunadkie. Huska moleneid maroms po3d sa3ku 3
HECKIHYEHHOIO NOBEOIHKOI0 8 MUHYAOMY abO HAGIMb CUHZYASIPHICMIO HA CKiH-
UEHHUX YEePEOHUX 3Miujennsx. Bidsnaueno, w0 @eedeHHs KOCMONO2IMHOZO CKA-
ASAPHOZO NOASL NPU3GO0UMb 00 GUDOOXEHHS. | MEeHWOl MOUHOCMI Y GUIHAYEHH]
napamempa Q,. [Aas ycynenHs Ub020 6upodxenmns neobxiOHa 000amKko6a
inpopmauis, oxpim danux npo zeomempiro Bcecaimy.

KOCMOJIOTHYECKHE CKAJSPHBIE [10JII, HMHTHPYIOIHE KOC-
MOJIOTHYECKYIO ACDM-MOJEJb, XKoanos B. H., Heawenko A. FO. —
Hcenedosansl kocMmonozuneckue MOOeAU CO CKANSAPHBIM NOJAEM (MmeMHas dHep-
2ust 6e3 KOCMOJI0ZUMECKOU NOCMOSIHHOW ), KOMOpble UMUMUDYIOM CMaHOapm-
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nyto ACDM kocmonrozuueckyro moleab, ¢ Moy Xe zeomempuel u 80Ai0UUel
napamempa Xabbsa (¢ mod Xe 3a6UCUMOCMbIO omoMempu1ecKkozo paccmo-
SIHUSL U PACCMOSIHUSL NO YZN080MYy duamempy om z). H3yueno accumnmomuye-
ckoe nogedeHue peuienul 8 cJyuae NpOCMPAHCMBEHHO NAOCKOU BcenieHnou ¢
beccmonkHOGUMeNbHOU Mamepuell U Pa3tuiHbIMU AAZDAHKUAHAMU CKAJLSIPHOZO
noxns. Paccmompenst caynau cmeneHH0o20 KUHEemMuHeckoz0 4i1eHa U CmeneHHozo
nomenyuana. Haiidenvi anarumuueckue peuienust Onst HEKOMOPbLX YACMHbBLX
caywaes. Psid modened umerom peweHust ¢ OeCKOHeuHblM nogedenuem 8 npo-
WIOM UL CUHZYNISIDHOCMBIO OJ11 KOHEUHbIX KpacHbvlx cmewienul. Ommewaem-
Csl, HMO @GedeHue KOCMOJOZUHECKOZ0 CKANSIPHOZO NOJsL NPUGOOUM K HeKOmo-
pOMY BbIDOXOEHUr0 u MeHnbuiel mouHocmu 6 onpedenenuu napamempa 2,
Ymobbl, ycmpaHumb 3mo 8blpoXxoOeHue, Heobdxoouma OONONHUMEAbHAST UHGop-
Mayus, ROMUMO OaHHbLX O zeomempuu BcenenHoll.

INTRODUCTION

Standard ACDM cosmological model explains the wealth of experimental data
on CMB anisotropy and la type supernovae [3, 8, 13], though some facts
require modification of the dark matter equation of state [6, 11] without any
revision of the cosmological constant. On the other hand, theoretical and
experimental developments necessitate modification of the Standard model
leading to ideas of inflation, cosmological fields, branes in extra dimensions etc
(see, e. g., [10, 11, 14, 15]. Introduction of scalar fields as a key element of
the dark energy seems to be one of the most simple and natural ways to launch
primordial inflation and to explain the cosmological coincidences [10, 16]. As
soon as the scalar field was introduced in cosmology, the question about
reconstruction of the field Lagrangian from observational data arose [1, 20]. A
number of interesting examples have been considered, which establish some
correspondence between different models that may be used to explain obser-
vational data on equal terms (see [1, 7, 16, 17, 20]) and references therein).
The solution of this problem appears to be unstable: small errors in the
experimental data lead to considerable changes in the potential. Introduction of
non-canonical kinetic term like k-essence models [4, 5, 9, 12, 18] obviously
creates additional ambiguities in reconstruction of the scalar field Lagrangian.

Introduction of the additional field may lead to a revision of some
cosmological parameters, even if we retain the large-scale geometry of the FRW
Universe described by the redshift dependence of the Hubble parameter H(z).
Present constraints on ,, €, within ~2—3 9% accuracy [3, 8, 13] rely upon
measurements of H(z) within the framework of the ACDM cosmological model,
which use the data on Ia type supernovae magnitude-redshift dependence and
WMAP data that restrict the position of the first peak in the CMB anisotropy
power spectrum. The redshift-space distortions used to constrain the cosmo-
logical parameters from LSS surveys (see, e.g., [2, 7] also have geometrical
origin. When additional degrees of freedom due to the scalar field are
introduced, the same H(z) dependence as in case of the ACDM cosmological
model might be preserved. At the same time this leads to a reduction of €,, if
some independent information on this parameter is used. Of course, there are
the other ways to study the dark matter content (galactic rotation curves, virial
mass estimates, gravitational lensing), however they determine Q,, with much
lower accuracy. If the scalar field is introduced leaving somehow the large-scale
geometry unchanged, we cannot separate its contribution into the cosmological
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density from the other forms of matter with the same precision as in the ACDM
model.

We keep in mind this problem in the present paper dealing with
reconstruction of the scalar field Lagrangians that yield exactly the Hubble
diagram of the standard ACDM model.

BASIC EQUATIONS

Here we present the basic relations of the scalar field cosmology. Details may
be found in [4, 9, 14, 16]. We confine ourselves to the case of the critical
cosmological density, which means that the space-time metric is spatially flat
2]
ds*=df — &()1dy’ + x*(d&* + sin’(0)dp?) ], §)]
(c = 1), the scale factor a can be related to the redshift z:
1 +z=a(t,)/a(?). ‘ 2

The observable photometric distance is
D,(2) = (1 + 2) [HE)T'dC,
[}

where H(z) = a(t)/a(t) is the Hubble parameter at the cosmological epoch t.
Therefore one may consider H(z) as an experimentally measurable function
yielding a(¢) up to an unessential constant factor.

We consider a cosmological model, where the main contribution to the
cosmological density is due to the scalar field plus the matter with zero pressure
p = 0. The mass density p,, of the pressureless matter varies as a function of
the redshift as follows:

pm=(l + Z)agmocr ’ (3)

where p., = 3H;/(87G), R = pu(te)/Pery Ho = H(0) being the modern value of
the Hubble parameter and ¢, is the modern epoch. The scalar field Lagrangian

L=L(S, ¢),

{ (C))
S=7 gP0.4p3up

leads to the Friedmann cosmological equations, which in case of spatially flat
Universe are

a G ., 0L
%=—T(m+(p2£+2L), )
a\’ 8G oL
_— = — = 6
¢2
=7

Taking (3) into account we have dz/dt = —(1 + z)H(z). This enables us to
rewrite (5), (6) in terms of observable quantities z, H:
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oL _(1+2z)dH? R, 3
S35~ 67 4z 7 1+ DPars M
_(+2*d [ H
K596 4z [T+ 2| ®
2
_(1+Z)2 zd_‘P
S=——H\4]- @

SCALAR FIELD MODEL YIELDING HUBBLE DIAGRAM OF ACDM MODEL

At present the ACDM cosmological model is in a good agreement with all the
observational data having relevance to the space-time geometry. In case of
spatially flat cosmological model with pressureless matter (without the scalar
field) the cosmological equations yield

H(z) = HiH(2),

h(z) = [Q%(1 + 2)° + 1 — Q%177 10
where the values H, = 72 km-s'Mpc’, Q% = 0.3 are obtained by fitting the
data with the standard ACDM model (3, 8, 13]. Note that in presence of the
scalar field the real content Q,, of the pressureless matter in the cosmological
density will be less than Q2.

Our first step will be to investigate Eqgs. (7)—(9) in case of the dependence
(10) that will be regarded as the “observational” one. We shall present the
examples of Lagrangian that lead to the same dependence (10).

The equations (7)—(9) may be viewed as observational restrictions on the
function L(S, ¢). Obviously, they do not fix this function in a unique way. We
shall consider less general Lagrangian

L=F(8)-V(p), an

with subsequent specific choice either of the kinetic term F or the potential V.
The restrictions on these functions on account of (7), (8) take on the form

dF Per
S E=T (1 + Z)s(Q?" - Qm), a2

V(p) = F(S) + pe(1 — Q). (13)

We see from (12) that for an increasing F(S) one must require that
Q, < QY the scalar field “eats” part of the cosmological density. For
dF/dS < 0 we have Q,, > Q). Further we put for definiteness dp/dz > 0.

Quintessence: canonical kinetic term. For certain known kinetic term
F(S) the field ¢(z) may be obtained from (12); then V(p) is determined
parametrically. Now we proceed to concrete examples. _

In case of the standard kinetic term F(S) = § Egs. (12), (13) are easily
solved to yield

o _ 172 . 1/2
P(2) = {——3(937{69"‘)] fd;[ 4+ +p(0), (14

A QAU+ +1 -9

110



COSMOLOGICAL SCALAR FIELDS

Vip) =2 [(1 + (@5 — 2,) + 2(1 - 2] as
Note that at present epoch dV/dp # 0 (z = 0).
For z » 1 we have an exponential growth of V(p)
1/2
~Per (0 _ 2469,

V((p) ) (Qm Qm)exp[(gi)n -Q, ’ (16)
but the field grows only logarithmically as a function of the redshift. In case of
small deviation of ©, from Q) the contribution of V(p) remains small for all
z in comparison with the cold matter energy density. More general problem of
Lagrangian reconstruction including non-spatially-flat case has been considered
in {7].

K-essence: F is given, find V. Now we consider equations (12), (13) with
a kinetic term of the form

F(S)=(alSI1® + by, an

for definiteness we consider positive a, b, «, 8. The left-hand side of (12) is a

monotonous function, so S and therefore dp/dz > 0 is uniquely defined from

(12). This gives the monotonous function ¢(z) up to the additive constant. The

potential V(p) also turns out to be a monotonous function. We denote y = af.
For ¥y < 1 the field asymptotic behavior is

(p(z) - ﬁ (Q(r)n _ Qm)l/(Zr) 200/ 4 0(1)
as z » o,

1 _
Vi)~ Q= y™n ™/, Q> .

For y = 1 the potential has exponential behavior like (16). For v > 1 the
scalar field is bounded p(z) = ¢, for z > o, where ¢, < =, and V(p) > oo,
P P

K-essence: V is given, find F. First of all we note that in case of the
constant potential V(p) = V,, for any non-trivial dependence F(S), it follows
from (13) that S = const. This is incompatible with (12) unless the field is
constant, S =0 and Q,, = Q2 .

Consider the power-law potential

V(p) = Ap". (18)

Then Eq. (13) takes on the form
F(S)=pe (R — Quiy” — (1 — )], (19)
where v = p/a, a = [(Q), - Q,)p./A1/". After differentiation of (19) with

respect to z and combining the result with (12) we have

(1+2)7° % {ln {(1 + 2)A(z) ((11—15} } = ny"! Z,—lf, 20

In case of the linear potential (n = 1) Eq. (20) leads to a first order linear
differential equation with respect to (dy/dz)"' yielding an explicit solution

(1 + 2Yh(2) {cz —f#f;;h(z,,ﬂ] Qe

0 J

Y(z)=C, +fdz'
0
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C,, C, are arbitrary constants. Then

-2

«’H z dz'
/ 2)

§= G- g

2 e (1 + )R

Equations (19), (22) define F parametrically.
Denote

% dz
I°={ 0+ 2) hz)"

— () In case of C, > I, the function S(z) is monotonically increasing on z in
(-1, «); it varies within the interval (0, Spa.), Smax = (@2H2/2) [C, — I, T2
Therefore F and ¢ may be defined as single-valued functions of S only on
(0, Su.) and we are free for arbitrary choice of F(S) for S > Sg,,.

— (i) In case of C, = I, we have ¢(z) ~ z* and F(S) ~ §Y? ~ 2* for
S - Smax = «.

— (i) If 0 < C, < [I,, then there is a field singularity ¢ ~ In(z, — 2),
F(S) ~ In(S) for some z - z and, accordingly, singularity of the energy
density. The solution of the system (11), (19) cannot be extended for all
z in the past. Analogous situation occurs in the future for C, < 0.

In a general case n > 0 it follows from (11) that in a regular point of the
function F(S) the derivative dp/dz cannot be zero. Equation (20) may be
written as

(1+223£= n—ld_w
25 dz. ™ 4z

whence dS/dz # 0; so S(z) and p(z) are monotonous functions and there exists
a single-valued inverse function z(S) on some interval. Depending of the initial
conditions for (20) the following cases are possible for solutions of (20) for
z>0

— (i) S(z2) is bounded for all z;

— (i) S(z) = « as z = <, in this case there is a solution having power-law
1/n
1 1

asymptotics $(z) ~ |-+ 5 2",z > oo

— (iii) S(z) > o, p(z) > = as z - z, for some z; < . In this case (20) yields
sd | (4y)| _dy”
(1 +2) dz [ln[dz dz ’
where we have omitted the bounded terms that are not essential for asympto-

tical behavior of y for z - z;,. After substitution ¢ = (1 + z)*"£'/" (neglecting
an integration constant) we have

EG/m gE\
ln( s =,

n

whence
J &t d =y - 2),
z

C; is an integration constant.
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The asymptotic expansion of the left-hand side integral in powers of £ is

P _ny/n ot l1—n 1-n(1-2n
[ et gE = ¢ >/e9(1+ nE + 4 3552 )+...),

whence we get

DISCUSSION

We considered the FRW cosmological models without A-term but with the scalar
field and the pressureless matter in case of spatially flat Universe. We study
the scalar field Lagrangians L = F(S) — V(p) yielding the same dependence
H(z) as in the ACDM model, which provides the same dependence of
photometric distance and angular diameter distance upon redshift. The H(z)
dependence restricts the potential V(p) up to integration constants, provided
that the kinetic term F(S) be given, and vise versa. The exact analytic
expressions in parametric form are presented for V if F(S) = S; and for F in
case of the linear potential V(p).

If the scalar field is introduced, then some part of cosmological density
Q4010 Will be due to this field. If Q% (the dark matter content) is derived within
the standard model on account the data on large-scale geometry, then
introduction of the scalar field leads to the relation 2, + Qg = Q° and
therefore to some change of the real content of the dark matter. Therefore Q,,
and €2;,, cannot be separated on account of purely geometric data without
additional information constraining these parameters separately. In fact the
same dependencies of the Hubble parameter, photometric distance and angular
diameter distance upon redshift may take place for different relations of €2,, and
peq. This degeneracy can be removed using independent data about £,
which, e.g., are related to the large-scale structure and/or the whole CMB
anisotropy spectrum, however in this case the accuracy of determination of
Q,, will be worse in comparison with pure ACDM model. It should be pointed
out that this degeneracy is due to the unknown Lagrangian; this problem does
not arise if we specify the appropriate Lagrangian form up to some parameter
set; e.g., in the case of a canonical kinetic term and V(p) = ap® + fp° + yp* the
model parameters can be constrained uniquely (within experimental errors)
from the observed H(z) dependence. On the other hand, it would be highly
improbable that realistic Lagrangian must have exactly one of the forms
describes in Section 3 so as to mimic the ACDM model. However, a rigorous
approach must rule out such possibility as well.

The examples considered above when the kinetic term is specified show the
infinite behavior of the field in the past though the relative content of the field
energy density remains typically of the same order as at the present epoch
(~ 5 - Q,). The other set of examples shows singular behavior for finite z
and thus suggests possibility of new physical situation (phase transitions?) in
the early Universe.

At the end we note that though the above considerations deal with the case
of spatially flat Universe and pressureless matter, main qualitative aspects
(degeneracy in determination of 2, and existence of singular behavior in the
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past) will remain in a more general case dealing with more general dark matter
equation of state or H(z) dependence.
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