ИНТЕГРАЛЬНЫЕ СХЕМЫ И ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ

Потенциал плазмы является одним из главных параметров при плазменном травлении, где ускоряющее напряжение влияет как на профиль, так и на селективность травления. Измерения, проведенные при помощи зонда Ленгмюра, показали, что с использованием элегаза SF_6 плотность плазмы составляет 10^{10} — 10^{12} см⁻³, а потенциал плазмы составляет 5—9 В при мощности 300 Вт и 26—30 В уже при мощности 700 Вт. Кроме плотности ионного тока, на скорость и селективность травления, как видим, влияет энергия ионов. Малая величина потенциала плазмы (5—20 В) обеспечивает низкое дефектообразование — меньше 0,05 см⁻².

Энергию ионов можно изменять подачей на подложкодержатель напряжения смещения $(0...-100~\mathrm{B})$. При напряжении смещения в пределах $-50...-100~\mathrm{B}$ анизотропия достигает значения 1,0, а ионный ток, которым обеспечивается травление, состоит целиком из положительных ионов. При уменьшении потенциала возрастает электронная составляющая, которая уменьшает вертикальную составляющую скорости травления в SF_6 , что связано с увеличением скорости десорбции F на кремниевые пластины.

Таким образом, высокочастотные плазменные процессы осаждения и травления с использованием зоны послесвечения объемных реакторов ЭЦР благодаря отсутствию теплового действия и радиационных повреждений дают возможность в субмикронной технологии БИС реализовать топологические размеры 0.25—0.8 мкм, снизить дефектность функциональных слоев до уровня ≤ 0.05 см $^{-2}$ и увеличить зарядовую стабильность межфазной границы раздела Si—SiO $_2$, которая оценивается нестабильностью порогового напряжения и напряжения плоских зон.

Варьирование давления и мощности плазменного травления позволяет изменять как анизотропность, так и селективность травления, что может успешно использоваться в спейсерной технологии формирования и профилирования контактных окон.

К. т. н. Г. И. ГАВРИЛЮК, В. В. СЕВАСТЬЯНОВ, Л. М. БОНДАРЧУК, В. В. ЧЕЧЕЛЬ

Украина, г. Винница, НИИ "Гелий" E-mail: lctec@svitonline.com

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

- 1. Кузнецов В. И., Солнцев С. А. Моделирование влияния режимов процесса на скорость травления вне зоны плазмы // Физика и химия обработки материалов.— 1992.—№ 2.— С. 114—122.
- 2. Durandet A. Distributed electron cyclotron resonance reactory: a vable concept for intergrated circuit etching // Microelectronic. Manufacturing and Testing.— 1989.— N 5.—P. 26—28.
- 3. Новосядлый С. П. Плазмохимические процессы в системной технологии БИС // Вестн. Харьковс. ун-та. Сер. Физическая. Ядра, частицы, поля.— 1999.— № 453, вып. 3.— С. 61—68.
- 4. Новосядлый С. П. Физико-технологические особенности плазмохимических процессов субмикронной системной технологии БИС // Теоретическая электротехника. ~ 2000 . № 55. С. 21—27.
- 5. Новосядлий С. П. Полікремнієва спейсерна технологія формування субмікронних контактів великих інтегральних схем // Труды 2-й Междунар. науч.-практ. конф. "Современные информационные и электронные технологии".—Одесса.—2001.—С. 263—264.
- 6. Новосядлый С. П., Курило И. В. Физико-химические особенности субмикронной оптической литографии БИС // Вестн. НУ "Львовская политехника". Химия, технология веществ и их применение. 2000. № 395. С. 78—82.
- 7. Flam D. L. Trends in plasma sources and etching // Solid State Technology.— 1991.— Vol. 34, N 3.— P. 47—50.
- 8. Новосядлый С., Иванцив Н., Иванцив В. Особенности и модели травления в субмикронной технологии БИС // Вестн. НУ "Львовская политехника". Компьютерные системы проектирования. Теория и практика.— 2002.— № 444.— С. 48—56.
- 9. Новосядлый С. П. Технологический САПР на основе тестовых структур // Физика и химия твердого тела.— 2002.—Т. 3, № 2.—С. 148—159.

Дата поступления в редакцию 24.09 2002 г. Оппонент д. т. н. В. С. ОСАДЧУК (ВГТУ, г. Винница)

СИЛОВАЯ МИКРОСХЕМА ДЛЯ БЛОКОВ УПРАВЛЕНИЯ ГАЗОРАЗРЯДНЫМИ ИСТОЧНИКАМИ СВЕТА

Предложена схема управления высоковольтными инверторами, создана силовая микросхема для энергосберегающей техники, работающей в сложных климатических условиях.

В настоящее время в энергосберегающей технике широко применяются электронные преобразователи, работающие по схеме с высоковольтными инвертора-

ми на базе МОП-транзисторов [1]. Указанная схема включает в себя генератор с частотой до 100 кГц и высоковольтный (600 В) драйвер, который формирует выходные сигналы с паузой до 1,2 мкс, что позволяет гальванически связать транзисторы драйвера с силовыми транзисторами и обеспечить устойчивое функционирование электронного преобразователя.

Существует проблема обеспечения надежности в эксплуатации электронных преобразователей из-за проявления эффекта «защелкивания» выходных тран-

ИНТЕГРАЛЬНЫЕ СХЕМЫ И ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ

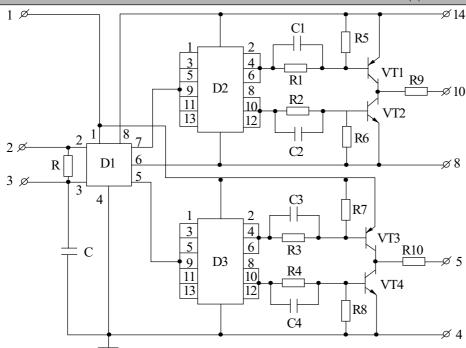


Рис. 1. Схема управления высоковольтными инверторами

зисторов драйвера в силу наличия связи выходного каскада со схемой управления [1, с. 84]. Кроме того, нагрузочная способность схемы управления недостаточно высока ($C_{\rm nore}$ <1000 пФ).

точно высока ($C_{\text{нагр}}$ <1000 пФ). Предлагается схема управления высоковольтными инверторами (**рис. 1**), свободная от упомянутых недостатков.

Драйвер D1 выдает 2-фазную периодическую последовательность с частотой следования импульсов до 30 кГц (задаются R, C), которые поступают на КМОП-инверторы D2, D3, где формируются импульсы управления комплементарными парами транзисторов VT1, VT2 и VT3, VT4, каждый из которых представляет собой набор интегральных транзисторов, соединенных по схеме Дарлингтона. Длительность переднего и заднего фронтов не более 30 нс. Ток «удержания» затвора нагрузочного транзистора более 2 А при смещении его потенциала (внешним источником) на 12 В от номинального напряжения. Устранена обратная связь, а С нагр увеличена до 10000 пФ.

Рис. 2. Внешний вид микросхемы без крышки

Исследованиями установлена зависимость тока потребления от тактовой частоты. В рабочем диапазоне $10...30 \, \mathrm{k\Gamma}$ ц при температуре $25^{\circ}\mathrm{C}$ ток потребления не превышает 7 мА. Получена также зависимость тока

«удержания» от повышения температуры окружающей среды до 150°С. Минимальное значение тока «удержания» 1,5 А зафиксировано при температуре окружающей среды 150°С. (Последние исследования проводились для оценки запасов применения схемы в условиях эксплуатации.)

На основании предложенной схемы управления высоковольтными инверторами проведена разработка силовой микросхемы для энергоэкономичных блоков управления газоразрядными источниками света.

Силовая микросхема представляет собой гибридную интегральную схему в корпусе 155-15-2 (см. рис. 2). Тонкопленочные резисторы выполнены сплавом РС 3710, проводники под ними покрыты алюминием для ультразву-

кового присоединения алюминиевой проволоки «кристалл—плата». Контактные площадки для напайки транзисторов, конденсаторов, драйвера в корпусе SOIK, микрорезисторов и внешних выводов предварительно лудятся сплавом ПОС-61. Смонтированная плата микросхемы присоединяется к основанию корпуса эпоксидным клеем. Соединение внешних контактных площадок и выводов корпуса выполняется медными лужеными проводами диаметром не менее 0,2 мм. Герметизация микросхемы выполняется лазерной сваркой.

Резюмируя результаты проведенной работы, можно отметить следующее:

- решена техническая проблема по устранению основных причин отказов электронных преобразователей в эксплуатации;
- на базе предложенной схемы управления высоковольтными инверторами разработана силовая микросхема для энергоэкономичных блоков управления газоразрядными источниками света мощностью до 400 Вт;
- конструкторско-технологическое исполнение силовой микросхемы в виде тонкопленочной гибридной интегральной микросхемы позволит организовать серийный выпуск экономичных и надежных отечественных электронных преобразователей для работы в сложных климатических условиях (морские условия, шахты, бензоколонки).

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Силовые полупроводниковые приборы / Под ред. В. В. Токарева.— Воронеж: Элист, 1995.