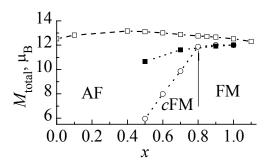
PACS: 71.20.Be, 75.50.Ee, 75.50.Gg, 75.10.Lp, 75.30.Kz

В.И. Вальков, Д.В. Варюхин, А.В. Головчан

ОСОБЕННОСТИ БАРИЧЕСКОЙ УСТОЙЧИВОСТИ НИЗКОТЕМПЕРАТУРНЫХ МАГНИТОУПОРЯДОЧЕННЫХ ФАЗ В СИСТЕМЕ  ${\rm Mn_{2-x}Fe_{x}As_{0.5}P_{0.5}}$ 

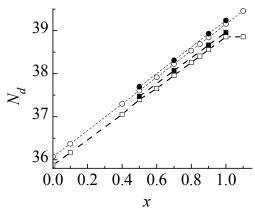
Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина E-mail: valkov@dpms.fti.ac.donetsk.ua

Проведено экспериментальное и теоретическое исследование фазовой диаграммы системы  $Mn_{2-x}Fe_xAs_{0.5}P_{0.5}$  под давлением. Обнаружено, что спонтанная и индуиированная магнитным полем низкотемпературная фаза в области  $0.5 \le x < 0.8$ не претерпевает значительных изменений при действии гидростатического давления до 2 kbar. На основе ab initio расчетов электронной структуры сплавов  $Mn_{2-x}Fe_xAs_{0.5}P_{0.5}$  установлено изменение степени электронного заполнения d-зоны при возникновении ферромагнитной (FM) поляризации и сжатия кристаллической решетки. Предложена модель, позволяющая учесть основные черты антиферромагнитной (АF) и скошенной ферромагнитной (сFM) структур. В качестве параметров модели выступают степень заполнения д-зоны, немагнитная зависящая от объема плотность электронных состояний и внутриатомный обменный интеграл. Их величины скоррелированы с данными расчетов электронной структуры из первых принципов. В рамках модели показано, что устойчивость магнитных характеристик сFM-структуры по отношению к давлению возникает вследствие увеличения числа электронов в магнитоактивной зоне при уменьшении объема элементарной ячейки.


## Введение

 $Ab\ initio$  расчеты FM спин-поляризованной электронной структуры сплавов  $\mathrm{Mn}_{2-x}\mathrm{Fe}_x\mathrm{As}_{0.5}\mathrm{P}_{0.5}$  при различных степенях сжатия кристаллической решетки  $M_0(\Delta V/V)$  показали, что в области  $0.5 \le x \le 0.7$  можно ожидать заметного изменения магнитных свойств при воздействии даже небольших гидростатических давлений. Однако экспериментальные изотермы намагничивания этих образцов  $M_0(H)$ , температуры спонтанных переходов в AF-фазу и величины критических полей для индуцированных магнитным полем переходов, измеренные под давлением  $P \le 2$  kbar, не показывают заметных отличий от своих аналогов при атмосферном давлении.

Анализ причин такого расхождения на основе модельных представлений и данных расчетов из первых принципов показал, что в сплавах системы  $\mathrm{Mn}_{2-x}\mathrm{Fe}_x\mathrm{As}_{0.5}\mathrm{P}_{0.5}$  при x<0.8 спонтанные и индуцированные магнитным полем магнитоупорядоченные фазы не являются ферромагнитными, а представляют собой скошенные структуры и их барическая устойчивость обусловлена увеличением заполнения магнитоактивной d-зоны при увеличении давления.


## 1. Результаты расчетов из первых принципов под давлением

Сопоставление рассчитанных  $M_0(x)$  и экспериментальных  $M_0^{\exp}(x)$  зависимостей магнитного момента в расчете на элементарную ячейку (рис. 1) при атмосферном давлении показало, что их хорошее согласие наблюдается только в области  $0.8 \le x \le 1.0$ . Поэтому можно предположить, что FM-состояние реализуется только в сплавах с  $x \ge 0.8$ . При меньших концентрациях железа экспериментальные и теоретические зависимости магнитного момента M(x) качественно различаются: теоретическая  $M_0(x)$  при уменьшении xпродолжает возрастать, а экспериментальная  $M_0^{\exp}(x)$  – понижаться. Анализ этого противоречия, проведенный в [1], привел к выводу о том, что магнитная структура спонтанной (0 < x < 0.8) и индуцированной магнитным полем  $(x \le 0.5)$  низкотемпературной фазы представляет собой *c*FM-структуру. Намагниченность данной фазы определяется FM-компонентой полного магнитного момента системы m, которая конкурирует с AF-компонентой l. При этом зависимость m от концентрации железа при различных давлениях m(x, P)может качественно отличаться от аналогичных зависимостей полного магнитного момента  $M_0(x, P)$  (рис. 1), вычисленного для коллинеарного ферромагнетика.



**Рис. 1.** Зависимости экспериментальных  $M_{\rm exp}$  ( $\circ$ ) и расчетных  $M_0$  ( $\square$ ,  $\blacksquare$ ) значений магнитного момента в расчете на элементарную ячейку от содержания железа. Параметры ячейки для всех x одинаковы и соответствуют экспериментальным для  ${\rm Mn}_{1.5}{\rm Fe}_{0.5}{\rm As}_{0.5}{\rm P}_{0.5}$  при  $\Delta V/V$ , %:  $\square - 0$ ,  $\blacksquare - (-5)$ 

Можно предположить, что сохранение стабильной намагниченности низкотемпературной cFM-фазы связано с подстройкой электронной структуры к сжатию решетки. Основным количественным показателем этого процесса является барическое повышение степени электронного заполнения магнитоактивной зоны  $N_d^{NM}(x)$  (рис. 2), сопровождающее увеличение ширины основного пика плотности электронных состояний при сжатии кристалла. Как показал детальный анализ [1,2] парциальных вкладов в плотность электрон-



**Рис. 2.** Зависимость числа d-электронов от содержания Fe в ферромагнитной ( $\square$ ,  $\blacksquare$ ) и немагнитной ( $\bigcirc$ ,  $\bullet$ ) фазах для сжатой ( $\Delta V/V = -0.05$ , зачерненные символы) и недеформированной (светлые символы) решетки. Параметры ячейки для всех x одинаковы и соответствуют x = 0.5

ных состояний, рост числа занятых dсостояний в результате сжатия решетки  $(N_{d,P>0}^{NM}(x) > N_{d,P=0}^{NM})$  (рис. 2) обусловлен таким смещением по энергии центров перекрывающихся s-, p-, dзон, которое приводит к энергетической выгодности перехода части электронов из s-, p-зон в магнитоактивную d-зону. Однако на вопрос, является ли возрастание параметра  $N_d$  в действипричиной компенсации тельности воздействия гидростатического сжатия на магнитные свойства состояний системы  $Mn_{2-x}Fe_xAs_{0.5}P_{0.5}$ , можно будет ответить только после проведения расчетов из первых принципов по влиянию сжатия решетки на различные типы неферромагнитных струк-

тур с магнитными ячейками, не совпадающими с кристаллохимической ячейкой. Подобные расчеты четырехкомпонентного неупорядоченного сплава с элементарной ячейкой, содержащей три формульные единицы с четырьмя неэквивалентными позициями для атомов, при наших технических возможностях не могли быть осуществлены. Поэтому для выяснения роли реакции электронной структуры на процесс стабилизации магнитоупорядоченных состояний системы  $Mn_{2-x}Fe_xAs_{0.5}P_{0.5}$  под давлением мы использовали модельный подход, развитый в [1,3]. Такой подход, обобщенный на случай конечных давлений [2], напрямую позволил учесть влияние изменения величин  $N_d$  на устойчивость скошенной структуры при воздействии гидростатического сжатия.

#### 2. Модельное описание скошенной фазы

Согласно [1] в модельном подходе в качестве элементарной ячейки рассматривается ячейка с удвоенным вдоль оси y периодом (что соответствует направлению волнового вектора AF-структуры, обнаруженной в родственной системе MnFeP<sub>1-y</sub>As<sub>y</sub> [4]). При этом каждой исходной кристаллохимической ячейке, содержащей 9 атомов в элементарной ячейке, ставится в соответствие один магнитоактивный узел  $\alpha$ , на котором электрон может находиться в двух состояниях: «спин вверх» и «спин вниз». Тогда в модельной ячейке, включающей два формально-различных узла ( $\alpha \in a$ , b), FM- и AF-поляризации электронного спектра можно описать неприводимыми векторами ферромагнетизма  $\langle \mathbf{F} \rangle$  и антиферромагнетизма  $\langle \mathbf{L} \rangle || \langle \mathbf{F} \rangle$  или  $\langle \mathbf{L} \rangle \perp \langle \mathbf{F} \rangle$ . Эти векторы, определяющие взаимную ориентацию магнитных моментов в

позициях a и b, соответствуют термодинамическим средним операторов  $\mathbf{F}_j$  и  $\mathbf{L}_j$ . Гамильтониан для такой модельной системы можно представить в виде

$$\hat{H} = \hat{H}_0 + \hat{H}_{int} + \hat{H}_{ex} \,, \tag{1}$$

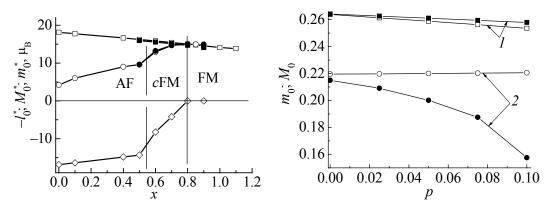
где

$$\hat{H}_{0} = \sum_{\sigma = +, -} \sum_{k} \gamma_{k} \left( a_{k\sigma}^{+} a_{k\sigma} + b_{k\sigma}^{+} b_{k\sigma} \right) + \sum_{\sigma = +, -} \sum_{k} t_{k} \left( a_{k\sigma}^{+} b_{k\sigma} + b_{k\sigma}^{+} a_{k\sigma} \right), \quad (2a)$$

$$\hat{H}_{\text{int}} = \sum_{j} \frac{u}{4} (n_{aj} + n_{bj}) - \tilde{J} \sum_{j} (\hat{S}_{aj}^{2} + \hat{S}_{bj}^{2}) = \sum_{j=1}^{N_{0}} \frac{u}{4} (n_{aj} + n_{bj}) - \frac{\tilde{J}}{2} \sum_{j=1}^{N_{0}} (\hat{F}_{j}^{2} + \hat{L}_{j}^{2}), (26)$$

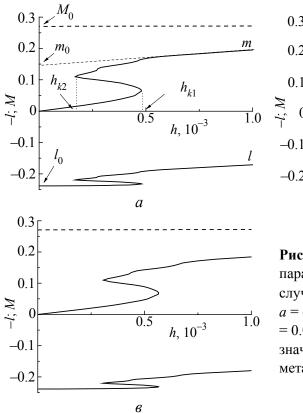
$$\hat{H}_{\text{ex}} = H_{0z} \sum_{j} \hat{F}_{jz} + \sum_{v} H_{v} \sum_{j} \hat{L}_{jv} . \tag{2b}$$

Здесь  $a_{k\sigma}$ ,  $b_{k\sigma}$  — фурье-компоненты операторов уничтожения электронов в позициях a, b соответственно;  $\alpha \in a$ , b,  $n_{ai}$ ,  $n_{bi}$ ,  $S_{ai}$ ,  $S_{bi}$  — операторы зарядовой и спиновой плотности в соответствующих позициях i-й ячейки, описываемые операторами рождения (уничтожения) электронов  $a_{i\sigma}^+(a_{i\sigma}), \ b_{i\sigma}^+(b_{i\sigma}); \ \tilde{J}$  — эффективный внутриатомный обменный интеграл;  $\hat{F}_j = S_{aj} + S_{bj}, \ \hat{\mathbf{L}}_j = S_{aj} - S_{bj}, \ \mathbf{V} \in x, \ y, \ z, \ \gamma_k$  и  $t_k$  — фурье-компоненты интегралов переноса электронов между одинаковыми (aa,bb) и формально-различными (ab) позициями соответственно.


В присутствии однородного  $H_{0z}$  и альтернированных  $H_v$  полей средние значения операторов ферромагнитной  $\left\langle F_{jz} \right\rangle \equiv F$  и антиферромагнитной  $\left\langle L_{jv} \right\rangle \equiv L_v$  мод отличны от нуля. Менее очевидным является сохранение конечных значений этих величин при отсутствии внешних полей. Если это происходит, то система спонтанно проявляет FM- и AF-свойства. Именно такое состояние, на наш взгляд, реализуется в системе  $\mathrm{Mn}_{2-x}\mathrm{Fe}_x\mathrm{As}_{0.5}\mathrm{P}_{0.5}$  при спонтанных низкотемпературных переходах первого рода из AF- в слабоферромагнитную фазу для x < 0.8. Используя метод функционального интегрирования (приложение), термодинамический потенциал электронной системы, описываемой гамильтонианом (1), при учете упругой энергии решетки можно вычислить и привести к виду (П5) [3]:

$$\tilde{F}(\xi, \eta, \omega) = E(\xi, \eta) + J \left(\xi - h/J\right)^2 + J\eta^2 + \omega^2/2\chi + p(\omega + 1),$$
 (3)

где  $h = H_{0z}/W$ ,  $J = \tilde{J}/W$ , p — безразмерное давление,  $\chi$  — объемная сжимаемость,  $\omega = (V - V_0)/V_0$  — относительное изменение объема V,  $2N_0$  — число магнитоактивных атомов,  $E(\xi, \eta)$  — энергия спин-поляризованных электронов, зависящая от начальной заселенности  $n_0(x)$  магнитоактивной зоны с эффективной шириной W. Энергия  $E(\xi, \eta)$  (П2) при определенных условиях (П10) может быть вычислена при введении зависящей от объема немагнитной плотности электронных состояний  $g(\xi, \alpha\omega)$  (П10). Однородные фурье-компоненты флуктуирующих обменных полей  $\xi$ ,  $\eta$  (П1), выступающие в роли параметров порядка, связаны со средними значениями фурье-


компонент операторов  $\langle F_{0z} \rangle = F$  и  $\langle L_{0x} \rangle = L$  соотношениями  $m = F/2N_0 = -\left(\xi - \frac{h_z}{J}\right)$ ,  $l = L/2N_0 = -\eta$ . Для учета перехода части s-электронов в

магнитоактивную d-зону при сжатии решетки была введена зависимость числа электронов от объема:  $n(\omega) = n_0(x) + a\omega$ . Решения уравнений состояния  $\partial \tilde{F}/\partial \xi = 0$ ,  $\partial \tilde{F}/\partial \eta = 0$ ,  $\partial \tilde{F}/\partial \omega = 0$ , дополненных уравнением для химического потенциала (П12), ищутся для конкретного сплава системы  $Mn_{2-x}Fe_xAs_{0.5}P_{0.5}$  при не зависящей от x «затравочной» плотности электронных состояний  $g_0(\varepsilon)$ , постоянных параметрах J,  $\alpha$  и заданных для каждого x начальных значениях  $n_0(x)$ . Величины  $n_0(x)$  и зависимости  $g_0(\varepsilon)$  могут быть приведены к величинам, рассчитанным ab initio для немагнитного состояния сплава с концентрацией железа х. В этом случае решения уравнения состояния позволяют получить удовлетворительное согласие между экспериментальной (см. рис. 1) и расчетной (рис. 3) зависимостями намагниченности от концентрации. Находит свое объяснение и барическая устойчивость спонтанной (рис. 4) и индуцированной магнитным полем (рис. 5) намагниченности. На рис. 5 приведены расчетные зависимости намагниченности M и компоненты вектора антиферромагнетизма L модели для случая перехода части электронов из магнитоактивной зоны при сжатии решетки  $(\delta)$  и для случая отсутствия такого перехода (s). Как видно, учет зависимости числа электронов в магнитоактивной зоне от объема качественно



**Рис. 3.** Изменение модельной (M, l)—x диаграммы состояний при p=0 (незачерненные символы) и p=0.05 (зачерненные):  $\Box$ ,  $\blacksquare$  — намагниченность насыщения  $M_0$ ;  $\circ$ ,  $\bullet$  — намагниченность индуцируемой cFM-фазы  $m_0$ ;  $\diamond$  — компонента вектора антиферромагнетизма l. Значения величин  $m_0$  в области стабильности AF-фазы ( $x \le 0.5$ ) получены из экстраполяции кривых m(h) к нулевому полю

**Рис. 4.** Расчетные барические зависимости магнитного момента для  $n_0 = 1.2638$  (x = 0.6) в метастабильном FM- (кривые I) и cFM- (кривые 2) состояниях при различных значениях параметра  $a: \circ, \Box - (-0.06); \bullet, \blacksquare - 0$ 



 $\begin{array}{c|c}
0.3 \\
0.2 \\
0.1 \\
\hline
0.5 \\
-0.1 \\
-0.2
\end{array}$   $\begin{array}{c|c}
0.5 \\
h, 10^{-3} \\
\hline
0.5
\end{array}$   $\begin{array}{c|c}
1.0 \\
\hline
0.5
\end{array}$ 

**Рис. 5.** Расчетные полевые зависимости параметров магнитного порядка для случая  $n_0 = 1.2535$  (x = 0.5): a - p = 0, a = -0.06; b - p = 0.05, a = -0.06; b - p = 0.05, a = 0. Штриховой линией обозначены кривые M(h), соответствующие метастабильному FM-состоянию (l = 0)

соответствует наблюдаемой экспериментально [2,5] устойчивости намагниченности системы к внешнему давлению.

# 3. Заключение

Использование комбинированного модельного подхода позволило прийти к следующим выводам.

- 1. Изменение магнитных свойств системы  $\mathrm{Mn}_{2-x}\mathrm{Fe}_x\mathrm{As}_{0.5}\mathrm{P}_{0.5}$  при уменьшении концентрации железа от 1 до 0 обусловлено изменением различных типов магнитного порядка от FM при x>0.8 ( $N_d(x)>38.533$ ), через  $c\mathrm{FM}$ -структуру при 0.5< x<0.8 ( $37.706< N_d(x)<38.533$ ) до AF при x<0.5 ( $N_d(x)<37.706$ ). При этом в области x<0.8 FM-структура является метастабильной, а энергетическая стабилизация  $c\mathrm{FM}$  и AF-структур происходит без качественных изменений в исходной немагнитной плотности электронных состояний и является следствием только изменения числа d-электронов  $N_d(x)$  в кристалле.
- 2. Барическая устойчивость фазы cFM и фазовые переходы между нею и АF-фазой обусловлены конкуренцией между расширением магнитоактивной d-зоны под действием давления и увеличением заселенности вследствие смещения ее центра по отношению к s-, p-зонам.

В заключение заметим, что возможность использования вычисленных из первых принципов интегральных характеристик электронного спектра для исследуемых сплавов может, на наш взгляд, служить оправданием модельного подхода и ряда сделанных нами упрощений.

#### Приложение

В статическом пределе при использовании преобразования Стратоновича—Хаббарда  $\exp\left[a\hat{F}^2\right] \equiv \left(\alpha/\pi\right)^{1/2} \int\limits_{-\infty}^{\infty} \mathrm{d}\xi \exp\left[-a\xi^2 - 2a\xi\hat{F}\right]$  свободная энер-

гия системы с гамильтонианом (1) при низких температурах, когда можно пренебречь флуктуациями обменных полей ( $\xi_{q\neq 0}, \eta_{q\neq 0}$ ), может быть представлена в виде функционального интеграла только по компонентам однородных полей [3]:

$$F = -\beta^{-1} \ln \int \prod_{q,\alpha,\alpha'} d\eta_{q=0,\nu} d\xi_{q=0,z} \exp(-\beta \psi \{\eta_{0\nu}, \xi_{0\nu}\}) + \mu N, \qquad (\Pi 1)$$

$$\psi(\xi, \eta) = \psi_0 + \psi_1, \ \psi_1(\xi, \eta) = -\beta^{-1} \ln Tr \exp\left(-\beta(\hat{H}_0 + \hat{H}_{int})\right), \tag{\Pi2}$$

$$\psi_0(\xi, \eta) = N_0 \frac{\tilde{J}}{2} \left\{ \left( \xi_{q=0, Z} - \frac{H_0}{\tilde{J}} \right)^2 + \sum_{v \in x, v, z} \left( \eta_{q=0, v} - \frac{H_v}{\tilde{J}} \right)^2 \right\}, \tag{\Pi3}$$

$$\tilde{H}_{\text{int}} = -\tilde{J}\left(\xi_{q=0,Z}\hat{F}_{q=0,Z} + \sum_{\nu} \eta_{q=0,\nu}\hat{L}_{q=0,\nu}\right), \tag{\Pi4}$$

где фурье-компоненты операторов спиновой плотности  $\hat{F}_{q=0,z}$ ,  $\hat{L}_{q=0,v}$  определяются через операторы рождения и уничтожения электронов  $a_{k\sigma}^+(a_{k\pm\sigma})$ ,  $b_{k\sigma}^+(b_{k\pm\sigma})$  известными соотношениями [3];  $\hat{H}_0 = \hat{H}_0 - \mu N$ ,  $\mu$  – химический потенциал,  $N(2N_0)$  – полное число электронов (атомов).

В этом случае  $\psi_1(\xi,\eta)$  легко вычисляется и после взятия интегралов методом перевала безразмерное выражение свободной энергии в расчете на атом  $\tilde{F} = F/(2N_0W)$  в пределе  $T \to 0$ ,  $H_y = 0$  при учете упругой энергии и энергии внешнего «безразмерного» давления  $p = \frac{PV_0}{W}$  приобретает вид

$$\tilde{F} = E(\xi, \eta) + J \left(\xi - h/J\right)^2 + J \left[\eta_x^2 + \eta_y^2 + \eta_z^2\right] + \omega^2/2\chi + p(\omega + 1), \quad (\Pi5)$$

$$E(\xi, \eta) = \frac{V_0}{16\pi^3} \sum_{m=1}^{4} \int d^3k \left[ \left\{ \left( E_m(k, \xi, \eta) - \mu \right) \Theta(\mu - E_m(k, \xi, \eta) \right\} \right], \quad (\Pi6)$$

где  $\Theta(x)=1, x>0, \ \Theta(x)=0, x<0; \ W$  — размерный параметр, характеризующий эффективную ширину магнитоактивной зоны в немагнитном состоянии;  $h=H_0/W, \ J=\tilde{J}/W$ ;  $\chi$  — безразмерная объемная сжимаемость;  $\xi\equiv\xi_0/2, \eta_v\equiv\eta_{0v}/2$  соответствуют решениям уравнений перевала  $\partial\psi/\partial\xi_0=0$ ,  $\partial\psi/\partial\eta_{0v}=0$ ;  $E_m(\varepsilon,\xi,\mu)$  — решения секулярного уравнения

$$\begin{vmatrix} \tilde{\gamma}_{k\sigma} - E & -\tilde{J}\left(\eta_{x} + \frac{\eta_{y}}{i}\right) & t_{k} & 0 \\ -\tilde{J}\left(\eta_{x} - \frac{\eta_{y}}{i}\right) & \tilde{\gamma}_{k-\sigma} - E & 0 & t_{k} \\ t_{k} & 0 & \tilde{\tilde{\gamma}}_{k\sigma} - E & \tilde{J}\left(\eta_{x} + \frac{\eta_{y}}{i}\right) \\ 0 & t_{k} & \tilde{J}\left(\eta_{x} - \frac{\eta_{y}}{i}\right) & \tilde{\tilde{\gamma}}_{k-\sigma} - E \end{vmatrix} = 0, \quad (\Pi7)$$

где

$$\begin{split} \tilde{\gamma}_{k\sigma} &= \gamma_k - (\sigma) \tilde{J}(\xi + \eta_z), \\ \tilde{\tilde{\gamma}}_{k\sigma} &= \gamma_k - (\sigma) \tilde{J}(\xi - \eta_z), \\ \sigma &= 1, -\sigma = -1. \end{split}$$

Решение уравнения (П7) имеет вид

$$E_{1,2}(k,\xi,\eta) = \gamma_k \pm \left\{ \tilde{J}^2 \left( \eta_x^2 + \eta_y^2 \right) + \left[ \tilde{J}\xi + \left( t_k^2 + \tilde{J}^2 (\eta_z)^2 \right)^{1/2} \right]^2 \right\}^{1/2},$$

$$E_{3,4}(k,\xi,\eta) = \gamma_k \pm \left\{ \tilde{J}^2 \left( \eta_x^2 + \eta_y^2 \right) + \left[ \tilde{J}\xi - \left( t_k^2 + \tilde{J}^2 (\eta_z)^2 \right)^{1/2} \right]^2 \right\}^{1/2}.$$
(II8)

Из общих решений (П8), описывающих фазу сосуществования ферро- и антиферромагнетизма, можно выделить два симметрично-различных случая:  $\xi \neq 0$ ,  $\eta_z \neq 0$ ,  $\eta_x = \eta_y = 0$  и  $\xi \neq 0$ ,  $\eta_x \neq 0$ ,  $\eta_z = \eta_y = 0$ . Скошенной структуре cFM, которую мы рассматриваем как альтернативную структурам FM и AF в системе  $Mn_{2-x}Fe_xAs_{0.5}P_{0.5}$ , соответствует второе решение. Если предположить, что  $\gamma_k \ll t_k$ , и пренебречь  $\gamma_k$ , то в (П8) удается формально ввести затравочную плотность состояний

$$g_0(\tilde{\varepsilon}) = \frac{V_0}{8 \pi^3} \int d^3k \, \delta(\tilde{\varepsilon} - t_k) \,. \tag{\Pi9}$$

В дальнейшем в качестве  $g_0(\tilde{\epsilon})$  можно использовать рассчитанную из первых принципов немагнитную плотность электронных состояний. Влияние гидростатического давления на электронный спектр учтем через зависимость ширины «затравочной» плотности электронных состояний от относительного изменения объема  $\omega$ :

$$g(\varepsilon, \omega) = g_0 \left[ \varepsilon (1 - \alpha \omega)^{-1} \right] / \int_{-\infty}^{\infty} g_0 \left[ \varepsilon (1 - \alpha \omega)^{-1} \right] d\varepsilon, \qquad (\Pi 10)$$

где  $\varepsilon = \tilde{\varepsilon}/(W)$ ,  $\alpha$  — постоянная, которая характеризует степень уширения зоны при сжатии решетки, а знаменатель обеспечивает сохранение полного числа состояний в зоне.

Тогда для (Пб) имеем

$$E(\xi, \eta) = \frac{1}{2} \sum_{m=1}^{4} \int g(\varepsilon, \omega) \Theta(\mu - E_m(\varepsilon, \xi, \eta)) E_m(\varepsilon, \xi, \eta) d\varepsilon.$$
 (II11)

Формально выражение (П5) можно рассматривать как неравновесный термодинамический потенциал, зависящий от неравновесных параметров порядка  $\xi$ ,  $\eta_{v}$ , равновесные значения которых определяются из уравнений состояния  $\partial \tilde{F}/\partial \xi = 0$ ,  $\partial \tilde{F}/\partial \eta_{v} = 0$ ,  $\partial \tilde{F}/\partial \omega = 0$ , совпадающих с уравнениями перевала. При учете только cFM-структуры ( $\xi \neq 0$ ,  $\eta_{x} \equiv \eta \neq 0$ ) уравнения состояния, дополненные уравнениями для химического потенциала, имеют вид

$$h = \xi + \frac{1}{2} \sum_{m=1}^{4} \int g(\varepsilon, \omega) \partial E_m(\varepsilon, \xi, \eta) / \partial \xi \left[ \Theta(\mu - E_m(\varepsilon, \xi, \eta)) \right] d\varepsilon, \quad (\Pi 12a)$$

$$0 = \eta + \frac{1}{2} \sum_{m=1}^{4} \int g(\varepsilon, \omega) \partial E_m(\varepsilon, \xi, \eta) / \partial \eta \Big[ \Theta \Big( \mu - E_m(\varepsilon, \xi, \eta) \Big) \Big] d\varepsilon, \quad (\Pi 126)$$

$$\omega/2K = -P - \frac{1}{2}\int \partial g(\varepsilon, \omega)/\partial \omega \sum_{m=1}^{4} \Theta(\mu - E_m(\varepsilon, \xi, \eta)) \quad E_m(\varepsilon, \xi, \eta) \, d\varepsilon, (\Pi 12B)$$

$$n(\omega) = \frac{1}{2} \int g_0(\varepsilon, \omega) \sum_{m=1}^4 \Theta(\mu - E_m(\varepsilon, \xi, \eta)) d\varepsilon, \qquad (\Pi 12r)$$

где  $n(\omega) = n_0(x) + a\omega$  определяет число электронов для равновесного объема  $\omega$ ;  $n_0(x)$  — число электронов для недеформированного ( $\omega = 0$ ) состояния; a — константа, характеризующая зависимость заселенности магнитоактивной зоны от объема.

- 1. *В.И. Вальков, А.В. Головчан, Д.В. Варюхин*, ФНТ **34**, 536 (2008).
- 2. В.И. Вальков, Д.В. Варюхин, А.В. Головчан, И.Ф. Грибанов, А.П. Сиваченко, В.И. Каменев, Б.М. Тодрис, ФНТ **34**, 927 (2008).
- 3. В.И. Вальков, А.В. Головчан, ФНТ **33**, 1109 (2007).
- 4. M. Bacman, J.-L. Soubeyroux, R. Darrett, D. Fruchart, R. Zach, S. Niziol, R. Fruchart, JMMM 134, 59 (1994).
- 5. E. Bruck, J. Kamarad, V. Sechovsky et al., JMMM **310**, e1008 (2007).

### V.I. Valkov, D.V. Varyukhin, A.V. Golovchan

# FEATURES OF BARIC STABILITY OF THE LOW-TEMPERATURE MAGNETICALLY ORDERED PHASES IN SYSTEM Mn<sub>2-x</sub>Fe<sub>x</sub>As<sub>0.5</sub>P<sub>0.5</sub>

Experimental and theoretical investigation of the phase diagram of system  $Mn_{2-x}Fe_xAs_{0.5}P_{0.5}$  under pressure has been performed. It has been determined that spontaneous and mag-

netic-field induced low-temperature phase is not much changed for  $0.5 \le x < 0.8$  under the hydrostatic pressure to 2 kbar. By *ab initio* calculations of  $Mn_{2-x}Fe_xAs_{0.5}P_{0.5}$  electronic structure it has been shown that there are changes in the degree of electron filling of the *d*-band under the ferromagnetic (FM) polarization origination and crystal lattice compression. A model taking the main features of antiferromagnetic (AF) and canted ferromagnetic (*c*FM) structures into account has been proposed. The model parameters are the degree of *d*-band filling, nonmagnetic volume-dependent density of electronic states and intratomic exchange integral. Their values have been correlated to the data of electronic structure first-principles calculations. Within the model it is shown that the stability of *c*FM-structure magnetic characteristics with respect to pressure is due to the increase of electron quantity in magnetically active band with unit-cell volume decrease.

- **Fig. 1.** Dependences of experimental  $M_{\rm exp}$  ( $\circ$ ) and calculated  $M_0$  ( $\square$ ,  $\blacksquare$ ) values of magnetic moment, in terms of the unit cell, on iron content. For every x, the unit cell parameters are the same and correspond to experimental ones for Mn<sub>1.5</sub>Fe<sub>0.5</sub>As<sub>0.5</sub>P<sub>0.5</sub> for  $\Delta V/V$ , %:  $\square 0$ ,  $\blacksquare (-5)$
- **Fig. 2.** Dependence of the quantity of *d*-electrons on Fe concentration in ferromagnetic  $(\Box, \blacksquare)$  and nonmagnetic  $(\odot, \bullet)$  phases for compressed  $(\Delta V/V = -0.05, \text{ dark symbols})$  and undeformed (light symbols) lattice. For every x, the unit cell parameters are the same and correspond to x = 0.5
- **Fig. 3.** Changes in the model (M, l)–x diagram of states for p = 0 (open symbols) and p = 0.05 (dark): □, – saturation magnetization  $M_0$ ; ○, – magnetization of the induced cFM-phase  $m_0$ ; ◇ antiferromagnetism vector component. In the region of AF-phase stability ( $x \le 0.5$ ), values of  $m_0$  are obtained from extrapolation of curves m(h) to zero field
- **Fig. 4.** Calculated baric dependences of the magnetic moment for  $n_0 = 1.2638$  (x = 0.6) in metastable FM- (curves 1) and cFM-states (curves 2) for different values of parameter a: 0,  $\Box (-0.06)$ ;  $\bullet$ ,  $\blacksquare 0$
- **Fig. 5.** Calculated field dependences of the magnetic-order parameters for  $n_0 = 1.2535$  (x = 0.5): a p = 0, a = -0.06;  $\delta p = 0.05$ , a = -0.06;  $\delta p = 0.05$ , a = 0. Dashed lines are curves M(h) corresponding to the metastable FM-state (l = 0)