PACS: 75.50.Tt

Б.Б. Бохонов 1 , Д.Г. Васьков 2 , С.С. Дорофейчик 2 , Г.И. Маковецкий 2 , В.Б. Шипило, К.И. Янушкевич 2

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И УДЕЛЬНАЯ НАМАГНИЧЕННОСТЬ КОМПАКТНЫХ ОБРАЗЦОВ, ПОЛУЧЕННЫХ ИЗ НАНОРАЗМЕРНЫХ ПОРОШКОВ NI—С В УСЛОВИЯХ ВЫСОКИХ ДАВЛЕНИЙ И ТЕМПЕРАТУР

В условиях высоких давлений и температур синтезированы магнитные композиты из наноразмерных порошков системы Ni-C. Установлена последовательность фазовых превращений с увеличением температуры спекания при постоянном давлении и времени синтеза. Определена кристаллическая структура фаз, образующих композиты. Измерена удельная намагниченность σ компактов, полученных при различных температурах T. Анализ зависимостей $\sigma = f(T)$ показал, что изменения фазового состава композитов заметным образом проявляются на величине значений температуры фазового превращения магнитный порядок—магнитный беспорядок.

Введение

Способы изготовления компактных керамических изделий из порошков для устройств электроники в условиях высоких давлений известны и широко используются. При решении задачи получения компактов под давлением при комнатной температуре из порошка никеля, капсулированного сажей [1], представлялось интересным изучить влияние воздействия высоких давлений и температур на кристаллическую структуру и удельную намагниченность этих компактов с точки зрения образования карбидов никеля и других сопутствующих углеродсодержащих фаз. В работе [2] показано, сколь важна роль образования карбидов металлов, растворителей углерода, и их разложения при получении синтетических алмазов. Магнитные свойства карбидов никеля, в отличие от карбидов железа и других металлов, слабо исследованы из-за метастабильного состояния их кристаллической структуры. Интерес к изучению свойств ультрадисперсного никеля и его карбидов заметным образом возрос

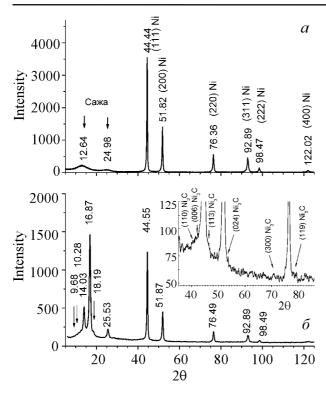
¹Институт химии твердого тела и механохимии СО РАН ул. Кутателадзе, 18, г. Новосибирск, 630128, Россия

²Объединенный институт физики твердого тела и полупроводников НАНБ ул. П. Бровки, 17, г. Минск, 220072, Беларусь

после освоения различных методов получения порошков в наноразмерном состоянии [3–7]. Представляет также интерес на примере никеля и его карбидов продолжить исследования роли металлов-растворителей углерода в шихте при синтезе искусственных алмазов, подобно выполненным в работах [8,9].

Целью данной работы было исследование фазового состава компактов, полученных в условиях высоких давлений и температур из наноразмерных порошков ~ 50%Ni-50%C, а также изучение температурных зависимостей их удельной намагниченности.

Образцы и методы эксперимента


В качестве реакционной шихты использовали наноразмерные порошки Ni с размером зерна ~ 60 nm, капсулированные сажей. Порошки синтезировали в условиях механической активации порошков никеля и сажи [1,10]. Содержание никеля и углерода в исходных порошках соответствовало $\sim 1:1$. Компактные, практически цилиндрической формы таблетки из таких порошков получали в твердосплавных камерах высокого давления типа «наковальня с лункой» [11]. Реакционную шихту спекали под давлением ~ 7.5 GPa поэтапно, с ростом температуры от T_1 до T_5 . Значения температур каждого этапа следующие, K: $T_1 \approx 1500$; $T_2 \approx 1700$; $T_3 \approx 1900$; $T_4 \approx 2000$; $T_5 \approx 2300$. Время спекания под воздействием высоких давлений и температур составляло 15 s. Выбор малого времени τ спекания шихты под давлением обусловлен целью получения компактов, содержащих как можно большее количество фазы карбида никеля, а не алмаза.

В работах [12,13] показано, что синтез при давлении P = 5.0–5.5 GPa и температуре 1620 K уже при $\tau \approx 60$ s приводит к интенсивному алмазообразованию даже в шихте Mn–Ni–C с добавкой 0.25 mass% чугуна и 0.10 mass% цемента. Малое время разогрева аппаратуры высокого давления и практически мгновенное отключение разогрева образца позволяют допускать, что компакты после воздействия высоких температур подвергались закалке под давлением.

Компакты, изготовленные из шихты ~ 50%Ni-50%C, после спекания измельчали и подвергали рентгеноструктурному анализу в Си K_{α} -излучении, поскольку рентгенограмма порошка дает наиболее точное отображение кристаллического состояния образца [14]. Рентгенограммы порошков компактов получены при комнатной температуре в интервале углов $5^{\circ} \le 20 \le 110^{\circ}$ с шагом $\Delta 20 = 0.03^{\circ}$ и временем набора в точке 3 s. Измерения удельной намагниченности проведены статическим пондеромоторным методом [15]. Условия измерения: образец в вакууме; диапазон температур измерений $\sigma = f(T)$ 77 K $\le T < 800$ K; магнитное поле H = 0.86 T; градиент магнитного поля в области образца $dH_Z/dx \approx 0.16$ T/cm на участке $\Delta Z \approx 3.0$ cm.

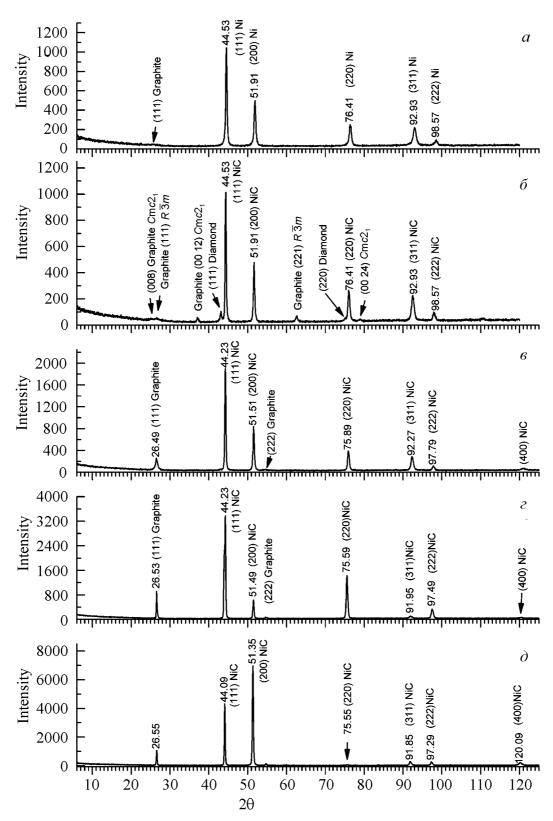
Результаты эксперимента и обсуждение

На рис. 1 представлены рентгенограммы порошков до и после нагрузки давлением при температуре $T \approx 300$ K. На рис. 1,a два размытых рефлекса с центрами тяжести при $2\theta = 12.64$ и 24.98° на рентгенограмме исходного

Рис. 1. Рентгенограммы исходного порошка (*a*) и подверженного нагрузке давлением в 7.5 GPa при комнатной температуре (δ)

порошка можно с некоторым приближением отнести к углероду C_{60} сингонии S.G. : : Fm 3 в состоянии. близком к аморфному, и индицировать их как (200) и (400). Это согласуется с содержанием информационной карточки 82-0505 базы данных PCPDFWIN [16]. Воздействие высоких давлений ≈ 7.5 GPa на исследуемые порошки уже при комнатной температуре приводит к более четкому проявлению рефлексов углерода в состоянии фуллерена.

Анализируя рентгенограмму образца наноразмерного порошка, подверженного воздействию высокого давления (рис. $1,\delta$), в диапазоне углов $5^{\circ} \le 2\theta < 26^{\circ}$ можно выделить ряд рефлек-


сов. Отражения под углами 14.03°; 16.87°; 18.19°; 25.53° индицируются в порядке возрастания как (102), (110), (103), (210). Две скрытые в возрастающем фоне линии под углами 9.68° и 10.28° индицируются как отражения (100) и (002) для фуллерена в состоянии C_{70} с элементарной гексагональной ячейкой сингонии S.G.: $P6_3/mmc$ (194). Согласно сведениям 48-1206 базы данных PCPDFWIN такая ячейка имеет параметры: a=10.5934 Å, c=17.262(2) Å и соотношение осей c/a=1.6295 [16].

Уменьшение интенсивности рефлексов порошка никеля, капсулированного сажей, после нагрузки давлением при комнатной температуре можно объяснить следствием двух причин. Во-первых, известно, что высокие давления подавляют дальний порядок, деформируя кристаллическую ячейку. Сопоставляя угловые положения основных рефлексов никеля на рис. 1,а и б, можно видеть смещение их в сторону больших 20, особенно это заметно для отражений (111), (200), (220). Во-вторых, давление усиливает проникновение углерода в поверхность частиц никеля с образованием карбида никеля Ni₃C. Рефлексы ромбоэдрической ячейки карбида никеля Ni₃C (110); (006); (113); (024); (119) малой интенсивности, кроме отражений, совпадающих по угловым положениям с рефлексами кубической ячейки никеля, видны на вставке рис. 1,б. Поскольку дифракционная картина исследуемого композита — это результат взаимодействия рентгеновского излучения с электронами

поверхности, очевидна доминирующая роль влияния состава и толщины поверхностной пленки гранул на содержание рентгенограммы и величину интенсивности дифракционных отражений. В нашем случае это может быть одной из причин резкого уменьшения интенсивности рефлексов Ni в исследуемом композите. При достаточно длительном механохимическом капсулировании углеродом частиц никеля образование тонкого слоя Ni₃C на поверхности зерен Ni наблюдали авторы работы [1].

На рис. 2 представлены рентгенограммы компактов из наноразмерных порошков Ni-C, спеченных под давлением $P \approx 7.5$ GPa и температуре 1500 K < T < 2300 K. Синтез под давлением и температуре 1500 K за время 15 s привел к заметным изменениям кристаллического состояния композита Ni-C (рис. 2,a.). Во-первых, исчезли рефлексы углерода в состоянии фуллерена. Очевидно, что давление $P \approx 7.5$ GPa и температура 1500 K за время воздействия $\tau = 15$ s достаточны для преобразования углерода из состояния С₇₀ в графит, который находится практически в аморфном состоянии, поскольку на рентгенограмме проявляется только один рефлекс (111) графита очень малой интенсивности. Во-вторых, произошло дальнейшее уменьшение интенсивности всех рефлексов никеля и увеличение площади основания их со стороны предполагаемых рефлексов карбида никеля Ni₃C с ромбоэдрической элементарной ячейкой. Понижение интенсивности рефлексов никеля и смещение их угловых положений в сторону больших углов позволяют говорить о дальнейшем увеличении деформации кристаллической ячейки Ni в результате воздействия давления при температуре 1500 К.

Спекание под давлением при температуре 1700 К приводит к более значимым изменениям в фазовом составе композита (рис. $2,\delta$). На рентгенограмме проявляются отражения малой интенсивности графита (111) и (221) ромбоэдрической ячейки S.G.: $R\overline{3}$ m (75-2078 [16]) и (0 0 8), (0 0 12), (0 0 24) графита с также деформированной орторомбической ячейкой S.G.: Cmc2₁ (74-2330 [16]). Кроме этого, четко видны два рефлекса углерода (111) и (220) в состоянии синтетического алмаза (75-0410 [16]), позволившие зафиксировать начало его образования. Можно говорить о некотором увеличении содержания карбида никеля Ni₃C в композите по наличию рефлекса (012), не перекрывающегося с другими отражениями ромбоэдрической структуры (72-1467 [16]). Помимо перечисленного, наблюдается резкое смещение всех рефлексов (111), (200), (220), (311), (222), (400), ответственных при более низких температурах за Ni, в сторону меньших углов (см. рис. 2 и табл. 1). Этот факт свидетельствует об интенсивном преобразовании никеля в карбид NiC в такой же кристаллической сингонии, что и никель, но с несколько большим параметром элементарной ячейки. Угловые положения рефлексов (111), (200), (220), (311), (222), (400) рентгенограмм компактов, полученных при 1700 К, хорошо согласуются с информационной карточкой 14-0020 базы данных PCPDFWIN [16].

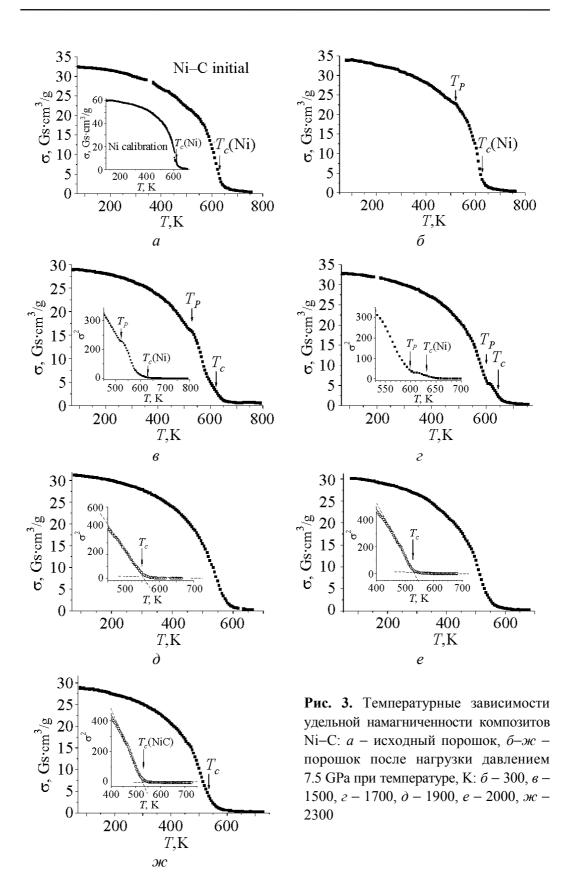
Рис. 2. Рентгенограммы порошков компактов, полученных под давлением 7.5 GPa и температурах, К: a-1500, $\delta-1700$, s-1900, $\varepsilon-2000$, $\partial-2300$

Таблица 1 Угловые положения 20 (deg) основных рефлексов рентгенограмм и параметры элементарных ячеек Ni и NiC a (Å)

Мате-		Основні	ые рефлек	Иотоличи	a Å		
риал	(111)	(200)	(220)	(311)	(222)	Источник	a, Å
Ni	44.494	51.847	76.378	92.932	98.437	(65-2865) [16]	3.524
	44.497	51.851	76.383	_	_	(87-0712) [16]	3.5238
	44.44	51.82	76.36	92.89	98.47	Композит (Ni-C)	3.528
						(исх. порошок)	
	44.55	51.87	76.49	92.89	98.49	Композит (Ni-C)	3.528
						7.5 GPa, 300 K	
	44.53	51. 91	76.41	92.93	98.57	Композит (Ni-C)	3.524
						7.5 GPa, 1500 K	
NiC	44.392	51.751	75.442	92.425	98.082	(14-0020) [16]	3.539
	44.35	51.65	75.99	92.53	97.93	Композит (Ni-C)	3.540
						7.5 GPa, 1700 K	
	44.23	51.51	75.89	92.27	97.79	Композит (Ni-C)	3.546
						7.5 GPa, 1900 K	
	44.23	51.49	75.59	91.95	97.49	Композит (Ni-C)	3.554
						7.5 GPa, 2000 K	
	44.09	51.35	75.55	91.85	97.29	Композит (Ni-C)	3.560
						7.5 GPa, 2300 K	

С использованием квадратичной формы [14]:

$$\sin^2 \theta_{hkl} = \frac{\lambda^2}{4a^2} \left(h^2 + k^2 + l^2 \right) \tag{1}$$


определены параметры элементарных ячеек никеля и монокарбида никеля в компактах композитов Ni–C, полученных при различных условиях спекания. Угловые положения рефлексов чистого никеля и монокарбида никеля в Cu K_{α} -излучении для сингонии $Fm\ \overline{3}\ m$ из справочных источников и измерений настоящей работы приведены в табл. 1.

Повышение температуры спекания до 1900, 2000 и 2300 К (рис. $2,s-\partial$) приводит к росту кристаллитов NiC. На это указывает резкое увеличение интенсивности рефлексов рентгенограмм компактов при этих температурах. Анализируя рентгенограммы рис. $2,s-\partial$, можно определить направление роста кристаллитов монокарбида никеля. Вероятнее всего, это направление (h00). При практически полном погасании рефлекса (220) видно перераспределение и уменьшение интенсивности отражений (111), (311) и (222). Рост интенсивности рефлексов (200) и (400) монокарбида никеля очевиден. Следствием появления и роста кристаллитов NiC в определенном направлении может быть небольшое увеличение параметра a элементарной ячейки в композитах, полученных при этих температурах (см. табл. 1). Некоторый рост интенсивности отражений (111) и (222) ромбоэдрической ячейки графита при температурах спекания 1900, 2000 и 2300 К под давлением за время

 $\tau=15$ s по сравнению с T=1700 K может быть следствием понижения растворимости углерода в расплаве металла за счет изменения состава композита с уменьшением в шихте карбида Ni₃C и повышением содержания NiC. В итоге резко упала степень алмазообразования. Поэтому на рис. 2, ϵ интенсивность рефлекса (111) синтетического алмаза приближается к фону. На рентгенограммах компактов, полученных при T=2000 и 2300 K (рис. 2, ϵ и ϵ 0) этот рефлекс уже отсутствует.

В работах [12,13] показано, что в процессе синтеза искусственных алмазов при термодинамических условиях, близких к равновесным, образование карбидов металла происходит преимущественно по поверхности зерен с естественным уменьшением их размера. А при достаточно большом (90 s и более) времени синтеза в условиях высоких давлений и температур продукты разложения образованных карбидов способствуют росту вновь возникающих зародышей алмаза. Принято считать, что в синтетическом алмазе концентрация парамагнитного никеля может варьироваться от 5.4·10 гд $6.0 \cdot 10^{17}$ spin/gr. Уменьшение содержания металла (Ni) в шихте напрямую связано с понижением скорости превращения графита в алмаз, т.е. с пресыщением системы [12]. Возможно, этим обусловлено сохранение рефлексов графита на рентгенограммах компактов после спекания при температурах 2000 и 2300 К. Поскольку содержание углерода и никеля в исходном композите до спекания под давлением ~ 50% : 50%, присутствие на рентгенограммах (рис. $2, s-\partial$) рефлексов графита позволяет предполагать о наличии некоторой доли несвязанного никеля. Никель может быть либо в состоянии, подобном аморфному, либо в количестве меньше пяти процентов. Оценка количества графита в композите из рентгенограмм рис. 2,2,д дает величину порядка 8-10%. О наличии чистого никеля при анализе этих рентгенограмм говорить нельзя. Рефлексы при больших углах смещены на 1°, при малых – на 0.5°. Такое перераспределение интенсивностей рефлексов говорит о сильной деформации элементарной ячейки карбида. Поэтому можно допустить некоторую нестехиометрию как по углероду, так и по никелю для карбида NiC, полученного в таких условиях. В связи с этим представляют интерес результаты изучения удельной намагниченности.

На рис. 3. представлены температурные зависимости удельной намагниченности σ исходного порошка и порошков компактов, подверженных воздействию высоких давлений и температур. Зависимость $\sigma = f(T)$ исходного порошка $\sim 50\%$: 50% представляет собой практически классическую зависимость ферромагнетика с температурой Кюри $T_c = 627$ К и удельной намагниченности при температуре жидкого азота $\sigma = 32.5$ Gs·cm 3 ·g $^{-1}$. Такая зависимость свойственна поликристаллическому никелю электролитической чистоты, используемому для калибровки установки (см. вставку на рис. 3,*a*). Анализируя зависимость удельной намагниченности исходного порошка, следует отметить, что размер зерна никеля в исследуемом композите соответствует условию однодоменных частиц, представленному в [17,18]:

$$d_0 \le \frac{2m}{I_S} \sqrt{\frac{10cA}{aN_R}} \tag{2}$$

(где I_S — намагниченность насыщения; A — обменный параметр; N_R — размагничивающий фактор сферы; m — поправочный множитель; a — постоянная решетки; c = 2 для ГЦК-решетки), а также в работах [5,19], когда в образце наноразмерного порошка сохраняется однородная намагниченность

$$R_C \approx \frac{0.95}{I_S} (10A)^{1/2} \left(Q - \frac{2K}{I_S^2} - \frac{H}{I_S} \right)^{-1/2}$$
 (3)

(где I_S — намагниченность насыщения; A — параметр обменной энергии; K — константа анизотропии; Q — размагничивающий фактор; H — напряженность поля).

В работе [19] показано, что частица с радиусом, удовлетворяющим уравнению (3), остается однодоменной при всех значениях поля $H > -2K/I_S$. Кри-

Таблица 2 Минимальные размеры доменов, при которых частицы сохраняют удельную намагниченность [19]

Материал	d, nm
Co	70
Fe	14
Ni	55
Fe ₃ O ₄	128
γ-Fe ₂ O ₃	166

тические значения диаметров однодоменных частиц, при которых еще сохраняется намагниченность для наиболее известных и используемых магнитных веществ, приведены в табл. 2 из работы [19].

То, что удельная намагниченность исходного порошка композита $\sim 50\%$ Ni : 50%C при азотной температуре (рис. 3,a) не равна половине значения таковой для чистого никеля (вставка на рис. 3,a), может также

свидетельствовать о том, что в исходном порошке композита присутствуют частицы с зерном d < 55 nm, не участвующие в обменных взаимодействиях, либо имеет место небольшой дефицит по никелю. Поскольку удельная намагниченность σ , измеряемая данным методом, определяется из выражения для пондеромоторной силы [15]:

$$F = m\sigma \frac{\partial H_Z}{\partial x} = \frac{m\chi_g}{\mu_0} H_Z \frac{\partial H_Z}{\partial x}$$
 (4)

(где m — масса образца; σ , χ_g — соответственно намагниченность и магнитная восприимчивость единицы массы образца; μ_0 — магнитная постоянная; H_Z — компонента магнитной индукции на ось Z; $\partial H_Z/\partial x$ — градиент компоненты H_Z вдоль оси x), занижение значения массы магнитной компоненты приводит соответственно к увеличению значений удельной намагниченности.

Нагрузка давлением $P \approx 7.5$ GPa на исходный порошок при комнатной температуре не вносит сильных изменений в зависимости удельной намаг-

ниченности, за исключением появления небольшой аномалии при $T_P = 515$ К (рис. 3,6). Появление аномалии на зависимости $\sigma = f(T)$ может быть следствием ряда причин. Наиболее возможные из них: 1) увеличение зерна частиц под воздействием давления при обработке либо под воздействием температуры при измерениях; 2) уход никеля на образование других фаз. Последняя версия более предпочтительна и подкреплена рентгеновскими исследованиями настоящей работы. На данном этапе зафиксировано увеличение содержания карбида Ni₃C в композите.

Спекание композита при $P \approx 7.5$ GPa и T=1500 K усиливает аномалию на зависимости $\sigma = f(T)$. Наблюдается смещение ее до $T_P = 530$ K (рис. 3, ϵ). По отношению к изменению намагниченности при температуре T_P работает версия увеличения содержания Ni_3C в композите. Рост зерна композита d>60 nm в результате спекания при высоких температурах очевиден. Естественно, должна увеличиваться и толщина пленки карбида никеля на зерне порошка до значений d>55 nm. Наличие более двух магнитных подрешеток Ni и Ni_3C на одном зерне, подобно магнетиту [20,21], при сильно деформированных кристаллических ячейках может быть причиной изменений значений σ . На вставке рис. 3, ϵ приведена квадратичная зависимость удельной намагниченности вблизи температуры Кюри этого образца. Она убедительно демонстрирует наличие и неизменность температуры T_C никеля для компакта, полученного при 1500 K.

Воздействие давлением $P \approx 7.5$ GPa при температуре спекания T = 1700 K увеличивает проявление аномальной точки T_P на зависимости $\sigma = f(T)$. Причина та же: в композите повышается содержание карбида никеля Ni₃C. При этой температуре, как показали рентгеноструктурные исследования, идет интенсивное образование и карбида NiC. Температура фазового перехода магнитный порядок I—магнитный беспорядок II композита принимает значение $T_P = 590$ K (рис. 3,г). Вставка на рис. 3,г позволяет сделать вывод о наличии малого количества несвязанного никеля в композите по сохранившейся четко выраженной его температуре Кюри. Все это согласуется с результатами исследований работы [9] в том, что на этапе начала и всего процесса образования алмаза металл-растворитель углерода в шихте находится в состояниях с различной валентностью.

 композитов, спеченных под давлением при температурах 2000 и 2300 К (рис. 3,e,ж), практически идентичны. Температура Кюри компактов, полученных при температурах 1900-2300 К, заключена в интервале $\approx 520-550$ К.

Заключение

В результате исследования кристаллической структуры и удельной намагниченности компактов, полученных в условиях высоких давлений и температур из наноразмерных порошков никеля, капсулированного сажей в соотношении ~ 50%Ni : 50%C, установлено:

- 1. Сажа, находящаяся практически в аморфном состоянии, используемая для механического капсулирования частиц никеля с зерном ~ 60 nm и не связанная с поверхностью этих частиц переходным слоем в пленке Ni₃C, под давлением $P \sim 7.5$ GPa за время $\tau = 15$ s при комнатной температуре приобретает структуру фуллерена C_{70} .
- 2. Спекание шихты в режиме $P \sim 7.5$ GPa, $T \sim 1700$ K и $\tau = 15$ s позволяет зафиксировать начало образования алмазной модификации углерода. При этом шихта обладает намагниченностью.
- 3. При температуре $T \sim 1900$ K и давлении $P \sim 7.5$ GPa за время $\tau = 15$ s практически весь никель уходит на образование кристаллитов карбида NiC.
- 1. B. Bokhonov, M. Korchagin, J. Alloys Compounds 333, 308 (2002).
- 2. H.M. Strong, R.E. Hanneman, J. Chem. Phys. 46, 3668 (1967).
- 3. C. Godart, L.C. Gupta, R. Nagarajan, S.K. Dhar, H. Noel, M. Potel, C. Mazumdar, Z. Hossain, C. Levy-Clement, G. Schiffmacher, B.D. Padalia, R. Vijayaraghavan, Phys. Rev. **B51**, 489 (1995).
- 4. R. Krawiets et al., J. Analytical Chem. **353**, 246 (1995).
- 5. M.J. Bonder, E.M. Kirkpatrick, T. Martin, S.-J. Kim, R.D. Ricke, Diandra L. Leslie-Pelecky, JMMM 222, 70 (2000).
- 6. Yue et al., Phys. Rev. **B62**, 8969 (2000).
- 7. Ushiro et al., Phys. Rev. **B73**, 144103 (2006).
- 8. E. Pavel et al., J. Mater. Sci. 28, 1645 (1992).
- 9. Б.Б. Бохонов, Д.Г. Васьков, Р. Кмець, Р. Крук, Г.И. Маковецкий, Г.М. Северин, В.Б. Шипило, К.И. Янушкевич, ФТВД **15**, № 3, 84 (2005).
- 10. Е.П. Елсуков, Г.А. Дорофеев, В.М. Фомин, Г.Н. Коныгин, А.В. Загайнов, Проблемы нанокристаллических материалов, В.В. Устинов (ред.), Екатеринбург (2002), с. 44–54.
- 11. В.Б. Шипило, Патент Республики Беларусь № 1302 (1994).
- 12. *В.Б. Шипило и др.*, Неорганические материалы **42**, 544 (2006).
- 13. В.Б. Шипило и др., Весці НАН Беларусі. Сер. фіз-мат. навук № 1, 82 (2002).
- 14. *Г. Липсон, Г. Стипл*, Интерпретация порошковых рентгенограмм, Н.В. Белов (ред.), Мир, Москва (1972).
- 15. В.И. Чечерников, Магнитные измерения, Изд-во МГУ, Москва (1969).
- 16. International Centre for Diffraction Data. JCPDS PCPDFWIN, V.2.00 (1998).
- 17. Е.И. Кондорский, ДАН СССР 82, 365 (1952).

Физика и техника высоких давлений 2006, том 16, № 4

- 18. А.Е. Ермаков, О.А. Иванов, Я.С. Шур, Р.М. Гречишкин, Г.В. Иванова, ФММ **33**, 558 (1972).
- 19. П.А. Чернавский, РХЖ XLVI, № 3, 19 (2002).
- 20. К.П. Белов, УФН 163, 53 (1993).
- 21. К.П. Белов, ФИЗИКА. Соросовский образовательный журнал 6, № 4, 71 (2000).
- 22. V.V. Milyavski et al., Proc. of the 10th International Conference on New Diamond Science and Technology (ICNDST-10), ICNDST-10 Special Issue, **14**, Issues 11–12, 1924 (2005).

B.B. Bokhonov, D.G. Vas'kov, S.S. Dorofeychik, G.I. Makovetsky, V.B. Shipilo, K.I. Yanushkevich

CRYSTAL STRUCTURE AND SPECIFIC MAGNETIZATION OF COMPACT SAMPLES OBTAINED FROM NANOSIZED Ni-C POWDERS UNDER HIGH PRESSURE AND TEMPERATURES

Magnetic composites from the Ni–C system nanodimensional powders are synthesized at high pressures and temperatures. The sequence of phase transformations with a sintering temperature increasing at constant pressure and time of synthesis is established. The crystal structure of the phases forming the composites was determined. The specific magnetization of the compacts obtained at different temperatures was measured. The analysis of $\sigma = f(T)$ dependence showed that the phase composition change is evidently revealed on the temperature values of magnetic order—magnetic disorder phase transformation.

- **Fig. 1.** X-ray diffraction patterns of initial powder (a) and after 7.5 GPa pressure stress at room temperature (δ)
- **Fig. 2.** X-ray diffraction patterns of powder compacts obtained under 7.5 GPa pressure and temperatures, K: a 1500, $\delta 1700$, $\delta 1900$, $\epsilon 2000$, $\delta 2300$
- **Fig. 3.** Temperature dependence of Ni–C composites specific magnetization: a initial powder; δ – κ powder after 7.5 GPa pressure stress at temperatures, K: δ 300, ε 1500, ε 1700, δ 1900, ε 2000, κ 2300